Performance and Tuning Guide:
Volume 2 - Optimizing and Abstract
Plans

Adaptive Server Enterprise

12.5

DOCUMENT ID: 33620-01-1250-02
LAST REVISED: May 2001

Copyright © 1989-2001 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in thisdocument is subject to change without notice. The software described herein is furnished
under alicense agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment viathe above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated inany form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Anayzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Server, Enterprise Application Studio, Enterprise
Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, EWA, Gateway Manager, ImpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, Netlmpact, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit,
Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open
ServerConnect, Open Sol utions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, Power Script,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare
Desktop, PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver,
Replication Server, Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-
Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financia
Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System X| (logo), SystemTools, Tabular Data Stream,
Transact-SQL, Trandation Toolkit, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visua
Components, Visual Speller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. /01

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to therestrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

About This Book

CHAPTER 17

.. Xiii
Adaptive Server OPtimMiZerccceveeeiei i 375
DefiNitioNcoiiiiiie et 375
Steps iN QUETY PrOCESSING ...coocvvrireeeeeeeeiirrireereeeesssnnrraeeeaeeeas 376
Working with the optimizercccvvvii e, 376
Object sizes are important to query tuning........cccceevvvvviieeeeeennns 377
QuErY OPIMIZALION ..oeeeiiiiiiiiiee e 378
Factors examined during optimization............cccccevvvvvieeeeeeeniiinnns 379
Preprocessing can add clauses for optimizing..........cccccceevviinneee. 380
Converting clauses to search argument equivalents............. 380
Converting expressions into search arguments 381
Search argument transitive ClOSUre..........cccccceeeviiiiiiieeeeeeenn, 381
JOIN transitive ClOSUIE.........eviiiiiiiiiiiieee e 382
Predicate transformation and factoringcccccceeveeeeninnnns 383
Guidelines for creating search arguments..........cccc.ceccvvvvvveeeeennns 385
Search arguments and useful INdEXeS.........cccccvveeeiiiciiiiiiiee e, 386
Search argument SYNtaXcccvvvveeieeiiiiiiiiiiee e 386
How statistics are used for SARGS...........ccccciviiiieiniinieene 388
Using statistics on multiple search arguments 390
Default values for search arguments.............cccvvvveeeeeiniinnnen, 391
SARGS using variables and parametersccccevvveeeennnns 392
Join syntax and join ProCeSSINGccvvvevieeeriiiiiiiiiiee e eniiiieeeeens 392
HOW jOINS @re ProCeSSEAuuvviiieeiiiiiiiiieiee s iiiiieieeee e 393
When statistics are not available for joinscccccecvvvveennn. 393
Density values and jOiNS.........cccceveeeiiiiiiiiieie e 394
Multiple column JOINSooiiiiiiiiei e 394
Search arguments and joins on atable.............cccccvvvveeeens 394
Datatype mismatches and query optimization....................cccuuue... 395
Overview of the datatype hierarchy and index issues........... 396
Datatypes for parameters and variables used as SARGs...... 399
Compatible datatypes for join columnscccvveiieeniinns 400
Suggestions on datatypes and comparisons...........ccccceeeeenns 401
Forcing a conversion to the other side of a join..................... 402

Contents

Splitting stored procedures to improve CoStingccccvvveeeeeennnns 403
Basic Units Of COSHING ...ccoooviiiiiiiiiiiiiiiii e 404
CHAPTER 18 Advanced Optimizing TOOISccccvvviiiiiiiieee e, 405
Special optimizing teChNIQUEScvviiiiieiiiiie e 405
Specifying optimizer ChoiCeS..........cccvvievie i, 406
Specifying table order in JoiNSccccvvviee e, 407
Risks of using forceplancccooccvvieiiieiicciiiecee e, 408
Things to try before using forceplan...........ccccccoeviiviieeeeeenns 408
Specifying the number of tables considered by the optimizer...... 409
Specifying an index for a qQUErY.......cccceeveeei i 410
RISKS...e et 411
Things to try before specifying an indeX............occccvvvveeeeennns 411
Specifying /0 Size iN @ QUETY.......oouviiiiiiieee e 412
Index type and large /O ..., 413
When prefetch specification is not followedccccce.... 414

set prefetCh ON.....o 414
Specifying the cache strategyccccccceeeei i, 415
In select, delete, and update statements...............ccccvvvveeennnn. 416
Controlling large 1/0 and cache strategies.........ccccccoeevvvvvreeeennnns 416
Getting information on cache strategies...........cccccvvveeeeeiiinnnns 417
Enabling and disabling merge joinsccccccevviiviieeeee e 417
Enabling and disabling join transitive closureccccvvveee... 418
Suggesting a degree of parallelism for a query.........ccccccvveeennnnns 419
Query level parallel clause exampleS........c.ocvvviiieeeeiniinnnen, 420
Concurrency optimization for small tablescccocviiieniinnnn, 421
Changing locking SChemecccccvviiiiiieiieee s 421
CHAPTER 19 Query TunNing TOOIS ..ccooiii e 423
OVEIVIBW ...ttt ettt ettt e e e e e ennneees 423
HOW tOO0IS May iNtEract.........c.ueviieeiiiiiiiiiiiiee e 425
Using showplan and noexec togethercccccceeeveiiiiivennnnn. 425
noexec and StatiStiCS 10eievieiiriiiiiee e 425
How tools relate to query processingccccveeevieecuivieeeeeesiescivnnnnns 426
CHAPTER 20 Access Methods and Query Costing for Single Tables 427
Table SCAN COSL.....uuiiiiiiii e 429
Cost of a scan on allpages-locked table.................cccconnnee 429
Cost of a scan on a data-only-locked tables 430
From rows t0 PAgESoooeeieeieeieieeeeee s 432
How cluster ratios affect large 1/O estimates............cccvveeee... 433
Evaluating the cost of index access........cccceevviiiiiieni i, 435

Contents

Query that returns a single roWcccccvvieeeeeeiiiiiiieee e 435
Query that returns Many rOWScooccvvieieeeeeeiiiiiiieeee e 435
Range queries with covering indexes..........ccccccveeeeeecivneeeennn. 438
Range queries with noncovering indexes..........c.cccovevvvveeennn. 439
Costing for queries using order DYcoovcuviieeee e 443
Prefix subset and SOMS..........coovviereiiieie e 444
Key ordering and SOISeuiieeviiiiiiiieiee it 445
How the optimizer costs sort operationscccccoecvvvveeeennn. 447
Allpages-locked tables with clustered indexes...................... 447
Sorts when index covers the qUeryccccceeeeeeiciiiiiee e 449
Sorts and NONCOVETNG INAEXEScceevvviviiiieeeeeeiciiieee e 450
Access Methods and Costing for or and in Clauses 451
OF SYNEBX ettt ettt ettt e e e e et a e e e e e e e eeaaa e e e aaaeees 451

in (values_list) converts to or processingccccvveeeeeeeeiinnns 451
Methods for processing or Clauses...........ccccvvvvveeeeeeccvinienennn. 452
How aggregates are optimizedcccvveeeiiiiiiiiiiieenie e, 456
Combining max and min aggregates........cccccvvvvvvieeeieeeniinnns 457
How update operations are performed..........coccvvvveeeeeinniiiineennn. 458
DIreCt UPAALESvvveiiiiiiiiieiiie et 458
Deferred UPdates........ooouvviiiieiiiiiiiiiiee e 461
Deferred iNdeX INSEITSccvveiiiiieiieee e 462
Restrictions on update modes through joinscceeee..... 465
OptimIiziNg UPAALES......cceeeiiiiiiiiiiee et 466
Using sp_sysmon while tuning updatesccccccceevievvnnen. 468
CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries .. 471
Costing and optimizing JOINSoccciiiiiie e 471
PrOCESSING ... vttt e e aa e 472
Index density and JOINS........ccveeeviiiiiiieeiee e 472
Datatype mismatches and joinscccccovvviviiieeeniiiiiiiiennnnn. 473
JOiN PErMUEALIONS ... 473
NeSted-l00P JOINSuuuiiiiiiiiiiiiiie e 476
COSETOMMUIA......eeieiee e 478
How inner and outer tables are determinedc.ccccoueee. 478
Access methods and costing for sort-merge joinscccveeeee.. 479
How a full-merge is performedcccccovviiiiiiieniiiniiiieeen, 481
How a right-merge or left-merge is performed 482
How a sort-merge is performed..........ccccccevevvvieeeeeeesicinneeenn. 483
MiXEd EXAMPIE ..vvvieiii e 483
Costing for MEerge JOINScoovccviieeiee e 485
Costing for a full-merge with unique valuesc......... 486
Example: allpages-locked tables with clustered indexes 486
Costing for a full-merge with duplicate values...................... 487
COSHING SOMS weeviiiiiiiiiiiiee et 488

Contents

CHAPTER 22

Vi

When merge joins cannot be used...........cccccvveeeiiiiiiiiiieennn. 489
USE Of WOTKEr PrOCESSES ...uuviiiieeiiiiiiiiiiiee e iiiieee e e e 490
Recommendations for improved merge performance........... 490
Enabling and disabling merge joinsccccceeevviiviieeeee e 491
At the server level........ e 492

At the Session level ... 492
Reformatting Strat@gycovvvvrerieee e 492
Subquery Optimization..........cccoeoeiiiiiiie e 493
Flattening in, any, and exists SUDQUENIESccccvvvverennn. 494
Flattening expression SUDQUENES...........oovviviiieeeeiiiiiiiieeenn. 499
Materializing subquery results...........cccccevviiiiiiienie e, 499
Subquery introduced with an and clauseccccccoevvnnnnee. 501
Subquery introduced with an or clausecccvveeeeeeeniiins 502
Subquery results cachingccccccovviiiiiiieiee s 502
Optimizing SUDQUETIES.........uvviiieiiiii e 503

or Clauses versus Unions in jOINS.........cveeeeiiiiiieereee s isiiieeesaeeens 504
Parallel QUEry ProCeSSiNg ...ccccuvveieieieeeeeiiiiiiiiniieeneeeee e e e e sesnnnennns 505
Types of queries that can benefit from parallel processing.......... 506
Adaptive Server’s worker process model..........cccccveeeiiiciininnnenn. 507
Parallel query eXeCutionccoovciiiiieiee i 509
Returning results from parallel queries.........c.cccccccoevcvvvveennn. 510
Types of parallel data acCess...........cccvvveeieeii i, 511
Hash-based table scans............ccocco i 512
Partition-based SCANScooviriieiiiiieeeee e 513
Hash-based iNdeX SCaNSccocvevrrieieinieie e 513
Parallel processing for two tables in @ joincccocvvvveeen. 514
SHOWPIAN MESSAGESvviieiiiiiiiiiiiie et 515
Controlling the degree of paralleliSm............ccccvvveviiiiiiniiiieeneen, 516
Configuration parameters for controlling parallelism............. 517
Using set options to control parallelism for a session 519
Controlling parallelism for a qUery.......cccccceeeevciviiiieee e, 520
Worker process availability and query execution 521
Other configuration parameters for parallel processing 522
Commands for working with partitioned tablesccccceeeennes 522
Balancing resources and performanceccccocvveeeeiiiiivneenennn. 525
CPU rE€SOUICESovtiiiiiiiiiiieiiee e 525
Disk resources and /Occoovieeiiiiieiiiee e 526
Tuning example: CPU and I/O saturation.............cccccceeeennnnns 526
Guidelines for parallel query configuration..........c.cccooccvvvvieeennnnnns 526
Hardware guidelines...........cooviiiiiiiiiie e 527
Working with your performance goals and hardware guidelines..

527

Examples of parallel query tuningccccvvvveeeeeeiiiinnneenn. 528

Contents

Guidelines for partitioning and parallel degree...................... 529
Experimenting with data subsets..............ccccvvvveeeiiiiciiiienenn. 530
System level IMPACEScovveeiiiiiiiiice e 531
LOCKING ISSUBSvvviiiiiiiiiiiiiie e ettt et e e e 531
DEVICE ISSUESevveieeiiiie ettt 532
Procedure cache effects.........ccccveiriiiieiiie e 532
When parallel query results can differ.........cccoocvviieiiiiiniiiiinnnn. 533
Queries that use set rowCouUNt.......cccoeeeeeeeeeeeeeeeeeeeeeeeeeee e, 533
Queries that set local variablesccoooeeeeeeieeeeeeeeeeee, 534
Achieving consistent resultscccccccev e, 534
CHAPTER 23 Parallel Query Optimizationccccvveveiveeee e 535
What is parallel query optimization?ccccccccvvvveeeeeeeiiiiiienenn. 536
Optimizing for response time versus total work..................... 536
When is optimization performed?..........ccccccoiiiiiiiieiee e, 536
OVerhead COSESciiiiiiiiiiiee et 537
Factors that are not considered............ccocceeeiiieriiiieeeennen. 537
Parallel access Methodscovviviiiiiieiic e 538
Parallel partition SCaNccvveiiiiiiiiiei e 539
Parallel clustered index partition scan (allpages-locked tables) 540
Parallel hash-based table scanccccocvveeiiieiiiiiiee e, 542
Parallel hash-based index scanccccoveiniiieeiniiee e, 544
Parallel range-based SCaNnS...........ccvveeviieiiiniiiieieee e 546
Additional parallel strategiesccccceeeviiiiiiieiie e, 548
Summary of parallel access methodscccccceeeviiiciiiieiiee i, 548
Selecting parallel access methods..........cccccceeeviiiiiiiieee e, 549
Degree of parallelism for parallel queries..........ccccvveeeeeiicivinnnnnnn. 550
L0 o] o 1= 112 1| S S USSR 551
Optimized degreeuuvvieeiiiiieee e 551
NeSted-l00P JOINS...c..coiiiiiiiiiee et 554
EXAMPIES. ..o 557
Runtime adjustments to worker proCesSesccovvvvvvvveennn. 559
Parallel query eXxamples..........cccceviiiiiiiiiiiie e 559
Single-table SCaNScooviiiiiiiii 560
MUItItable JOINS......cviiiiiiiiiiiie e 562
SUBQUETIES .o 565
Queries that require worktablescccovvveeeeiiiiiiiiiiee e 565
(U a1 To] o e [UT=T =T USSR 566
Queries With aggregatescccvveeveeee i 566
select into StatemMEeNtS.........cooeiiiiiiieee e 566
Runtime adjustment of worker proCcesses..........ccccvvveeeeeicvvvnnnnnnn. 567
How Adaptive Server adjusts a query planccccvveeeen.. 568
Evaluating the effect of runtime adjustmentsccccoce.... 568
Recognizing and managing runtime adjustments 569

Vii

Contents

Reducing the likelihood of runtime adjustments................... 570
Checking runtime adjustments with sp_sysmon 570
Diagnosing parallel performance problems............ccccccovviiiinneenn. 571
Query does not run in parallelccccoveviee i 571
Parallel performance is not as good as expected 572
Calling technical support for diagnosis...........cccccvvveeeeeeinnnee, 572
Resource limits for parallel qUeries ..., 573
CHAPTER 24 Parallel SOrtingcoooiiiiii e 575
Commands that benefits from parallel sorting............ccccccvvveeeennns 575
Requirements and reSOUIrCeS OVEIVIEWcccvuvvrereeeeeesievvneneenns 576
Overview of the parallel sorting strategyccccceevevviiiiiiieeneennnnns 577
Creating a distribution mapccccccovviiiiiii s 579
Dynamic range partitioning...........cccvveeeiienniniiiieeeeee s 579
RANGE SOMING ..evvviiiiie it 580
MErQING FESUILS ...vvvevieeiiiiiiiiie et 580
Configuring resources for parallel sortingccccoeevviiiiiennennnns 580
Worker process requirements for parallel sorts..................... 581
Worker process requirements for select query sorts............. 584
Caches, sort buffers, and parallel sorts...........cccccvveeeeeeenneee. 585
Disk reqUIrEMENLSccvvviiieee e 592
Recovery considerations............ceeeeieiiiiiiieee e esiiiieeee e e ssnneeeeens 594
Tools for observing and tuning sort behaviorcccccvvveeeeen. 594
UsiNg Set SOrt_reSOUMCES ON.......coovuviriieieeeniiniiieeeeae e s seiieeeens 595
Using sp_sysmon to tune index Creationcccccvvveveeeeeiniinnnne. 599
CHAPTER 25 Tuning Asynchronous Prefetch ..o, 601
How asynchronous prefetch improves performance.................... 601
Improving query performance by prefetching pages............. 602
Prefetching control mechanisms in a multiuser environment 603
Look-ahead set during reCoVery........cccccveeviniiiieiiieens i, 604
Look-ahead set during sequential scans...............cccoccvvvveen.. 604
Look-ahead set during nonclustered index access............... 605
Look-ahead set during dbcc checks..........ccccvvvveeeeeiiiiiiiennnn. 605
Look-ahead set minimum and maximum sizes..................... 606
When prefetch is automatically disabled............ccccccceeeeiiiininnnnnnn. 607
Flooding POOISceviieiiiiieee e 608

1/0O system ovVerloads..........ccccvvviiiiiiiee e 608
UNNECESSANY FAAS ..covivvviieiee e e eeiiiieeee ettt ee s 609
Tuning Goals for Asynchronous Prefetchcccccoevviiiiiiieinnnnnn. 611
Commands for configurationocccvvveevieeniniiiiiene s 612
Other Adaptive Server performance featuresccccvvveeeeennnn. 612
Large 1O oo 612

viii

Contents

Fetch-and-discard (MRU) SCaNSccccccovvvvvvieeeee e, 614
Parallel scans and large 1/OScccccceeveeeiiiciiiieece e, 614
Special settings for asynchronous prefetch limits 615
Setting liMits for reCoVery ..o 615
Setting liMits for dDCCcoveeviiiiiiii e, 616
Maintenance activities for high prefetch performance.................. 616
Eliminating kinks in heap tablesccccociiiiiieiiiiiiiiinenn, 617
Eliminating kinks in clustered index tables...............cccuvveee... 617
Eliminating kinks in nonclustered indexes.............ccocvvvveeeen.. 617
Performance monitoring and asynchronous prefetch 617
CHAPTER 26 tempdb Performance ISSUESuvvvvveeeieiiicciiieeeee e 619
How management of tempdb affects performance. 619
Main solution areas for tempdb performance........................ 620
Types and uses of temporary tables.............cccccvvvveeeiiiiiiiiienen. 620
Truly temporary tables..........cc.ooocviiiiiie e, 621
Regular usertablescccceeeeiiiiiiiiie e 621
WOrKEADIES ... 622
Initial allocation of tempdb..........cccccoviiiiiiii 622
Sizing the tempdb ... 623
Placing tempPaboeiiiiiiiiiiie 624
Dropping the master Device from tempdb segments................... 624
Using multiple disks for parallel query performance.............. 625
Binding tempdb to its own cacheccccccceeeiiiiiii 625
Commands for cache binding........ccccccovvviviiieiie e, 626
Temporary tables and 10CKINGccccvieeieei i, 626
Minimizing logging in tempdb...........ccccviiiiii i, 627
WIith SEIECE INTOeeiiiiiiiiiie e 627

By USING ShOMEr FOWSvviiiiiieee it 627
Optimizing temporary tables ... 628
Creating indexes on temporary tables.........ccccccovvviviieeeennnns 629
Creating nested procedures with temporary tables............... 629
Breaking tempdb uses into multiple procedures 630
CHAPTER 27 Cursors and PerformancCe ... 631
DEfiNItION ...eeiiriee et 631
Set-oriented versus row-oriented programmingc........ 632
EXAMPIE oo 633
Resources required at each stagecccccceeeeeeviiviieeee e 634
Memory use and eXECULE CUISOISccccvcuvrrerreeeeeeiiinnneneeens 636
CUISON MOUESeeiieiitit ettt e et e e e e e e e ene e e e enneas 637
Index use and requirements fOr CUrSOrS..........ccccvvvveeesiiciiveeneenn. 637
Allpages-locked tablesccocvvvieiieiiiice e, 637

Contents

CHAPTER 28

CHAPTER 29

Data-only-locked tables...........ccocvviiiiiiiiiiiiiiiie e, 638
Comparing performance with and without cursors....................... 639
Sample stored procedure without a Cursor...........cccceeevuvneeee. 639
Sample stored procedure with @ CUrSOr..........cccvvvveeeeeeinnnee, 640
Cursor versus noncursor performance comparison 641
Locking with read-only CUrsOrs..........ccccvvvieeieeiiiciiec e 642
Isolation levels and CUISOrS.........ccuveeiiiiiieiiiiie e 644
Partitioned heap tables and CUrsors.........cccccccvvicviieeeee e 644
Optimizing tiPs fOr CUISOIS....cccciiiiiiiiiiie e 645
Optimizing for cursor selects using a Cursorccccoeevveeee. 645
Using union instead of or clauses or in listSccccvvveeeeenn. 646
Declaring the cursor's intent..........cccuveeeveeiiiniiiieeeiee s 646
Specifying column names in the for update clause................ 646
USING SEL CUISOT FTOWSuvviiieeeeeiiiiiiiieeeeeessiiireeee e e e s ssinneeeeee s 647
Keeping cursors open across commits and rollbacks 648
Opening multiple cursors on a single connection.................. 648
Introduction to Abstract Planscccccccviiiiiiieiiiiiieeieeeees 649
D13 {1 o111 o] o NPT UPRRTPRRN 649
Managing abstract plans.........cccccceeeeiiiiiiiee e 650
Relationship between query text and query plansccc....... 650
Limits of options for influencing query plansccccu.oe..... 651

Full versus partial plansccccceeeeeeiiiiiiiieee e 651
Creating a partial plancccccceeiiiiiii 653
ADSEract plan groupPsoooeveiieeeiiiiie e 653
How abstract plans are associated with queries..............ccuveee.... 654
Abstract Query Plan GUIdeoooouiiiiiiiiieeeeeieeeee e 655
INEFOTUCTION ...t 655
Abstract plan language...........ooocvviiiiiiii i 656
Identifying tables ... 658
Identifying INAEXES........ccuvvviie e 659
SPeCifying JOIN OFAEIccvviiiiiie et 659
Specifying the JoIN tYPevvvvviiee i, 663
Specifying partial plans and hints.............cccoecvieiie e, 664
Creating abstract plans for subqueries............cccccceeeeiiinnneee, 666
Abstract plans for materialized Views..........cccccceeeevviiiiennnnnn. 673
Abstract plans for queries containing aggregates.................. 673
Specifying the reformatting strategy............occvvvvvvieeeiiniinnnen. 676

OR strategy limitationueeveeeeiiniiiiiiiiee e 676
When the store operator is not specified.............ccoovvvvvveennn. 676
Tips on writing abstract plans...........ccovvevveeniiiie e 677
Comparing plans “before” and “after’...........cccvvceeiiiciiiienneenn 678

Contents

Effects of enabling server-wide capture mode 678
Time and space to COpY Plans......cccccveeeveeciiiiiiee e, 679
Abstract plans for stored proceduresccccvvveeeeeeiicciiieeeeeeenn, 680
Procedures and plan ownership........cccccoovviiiiiieiniiiieeennn. 680
Procedures with variable execution paths and optimization.. 681

Ad Hoc queries and abstract planscccoccevvivveeniieee e 681
CHAPTER 30 Creating and Using Abstract Plans........ccccccccieiiiiiiiiiiiiiine 683
Using set commands to capture and associate plans.................. 683
Enabling plan capture mode with set plan dump................... 684
Associating queries with stored planscccccoovviiiienennn. 684
Using replace mode during plan capture.............ccccceeeeenneee. 685
Using dump, load, and replace modes simultaneously 686

set plan exists Check OptioNccccvveeiie i1 688
Using Other set options with abstract plans............ccccccce e, 688
UsiNg ShOwWpIanceeeiiiiiiiieee e 689
USING NOEXEC ... euviiieeeeieiiiteitaaeeeeeitreeaae e e s ansanaeeeaaesasnnnnnnees 689
USINg fOrCEPIANcvviiieiiiie e 689
Server-wide abstract plan capture and association Modes.......... 690
Creating plans using SQLcccoooviiiiiiiiiie e 690
UsSiNg Create Planooooiiiiiieieeieiiiieeee e 691
Using the plan Clauseccvveevieiiiiiiiiiie e 692
CHAPTER 31 Managing Abstract Plans with System Procedures 695
System procedures for managing abstract plans..............ccccoe..... 695
Managing an abstract plan group.........ccccccceeeeiiiciiieeee e 696
Creating @ grOUP.....ocuveveeeeeeeeiiirereeeeeessinreeeeeeeeesnnnnnaeeeeeaannns 696
(D] o] o]l aTo J= e [£o 18] o ISP 697
Getting information about a group.........cccccveeeeiiiciiiiieee e, 697
RENAMING @ GrOUP ..eiieieiiiiiiiee ettt e e e e e e e e e aee s 700
Finding abstract plansccccvvveee i 700
Managing individual abstract plans...........cccccoecviiiiieee i, 701
VIEWING @ PIAN ...eeiiiiiiii e 701
Copying a plan to another groupcccvvveveeeeeiiniiiiieieee e 702
Dropping an individual abstract planccccccceeeiiniiiieeenn. 702
Comparing two abstract plans.........cccecvviiiiiiiiiiiiiiiieee s 703
Changing an existing planccccceeeviiiiiiiene e 704
Managing all plans in @ groupcoooveviieenee e 704
Copying all plans in @ groupccccceeeeeiiciviieer e 704
Comparing all plans in @ group......ccccceecvvvvieeeeeeesciiieiee e 705
Dropping all abstract plans in a group..........ccccceeeeeeveicvvvnenn. 707
Importing and exporting groups of plans..........ccccccceevviiciiveeneenn. 708
Exporting plans to a user table.............ccccoeeviiveei i, 708

Xi

Contents

Importing plans from a user table............ccccoiiiiiiiniiiiiinennn. 709
CHAPTER 32 Abstract Plan Language Referencecccccceeeeevviviviciivvvenneennnn. 711
KEYWOITS ...vviiiieiiiiiiiieee ettt 711
OPEIANGS .ottt e e e e e s eaeeeeane 711
Derived tablesccoiiiiiiiee e 712
Schema for eXamplescceiiiiiiiiiiiee e 712
(o T (o 1O EUU S PRRPPR 713
PNTS . 715
I SCAN it 716
D) s 718
U e e 720
[0 T T 1o PO TP PP PP PPPPPPTTOt 721
IVIFU ettt e e s e e e e e e e e e e 723
NESTEA <.t 723
LI N o1 TP PP P PP PPTTOt 725
PArAlIEL......oiiiieii e 726
PIAN oo 727
PrefeIC oo 729
PIOP ittt 730
ST 1o PP 731
L] (0] (= 2PN 732
£ oo [P RUU PRSP 734
L S CAN . ettt 737
TDIE .o 737
[0 01T] o IO PRSP PURRP PP 739
VWV ettt e b e e e nnnen 740
10) PP 741

Xii

About This Book

Audience

How to use this book

Thismanual isintened for database administrators, database designers,
developers and system administrators.

Note You may want to use your own database for testing changes and
queries. Take a snapshot of the database in question and set it up on atest
machine.

Thismanual would normally be used to finetune, troubleshoot or improve
the performance on Adaptive Server. The Performance and Tuning Guide
is divided into three books:

* Volumel - Basics

* Volume 2 - Optimizing and Abstract Plans

* Volume 3 - Tools for Monitoring and Analyzing Performance
The following information is covered:

Volume 1- Basics

Chapter 1, “Overview” describes the major components to be analyzed
when addressing performance.

Chapter 2, “Networks and Performance” provides a brief description of
relational databases and good database design.

Chapter 3, “Using Engines and CPUS" describes Adaptive Server page
types, how datais stored on pages and how queries on heap tables are
executed.

Chapter 4, “ Distributing Engine Resources’ providesinformation on how
indexes are used to resolve queries.

Chapter 5, “Controlling Physical Data Placement” explains the process
for query optimization, how statistics are applied to search arguments and
joinsfor queries.

Chapter 6, “Database Design” describes how Adaptive Server accesses
tablesin queries that only involve a single table, and how the costs are
estimated for various access methods

Xiii

Xiv

Chapter 7, “Data Storage” describes how Adaptive Server accesses tables
during joins and subqueries and how the costs are determined

Chapter 8, “Indexing for Performance” describes performance issues with
CUrsors.

Chapter 9, “How Indexes Work” provides guidelines and examples for
choosing indexes.

Chapter 10, “Locking Configuration and Tuning” providesan in-depth ook at
the optimization of parallel queries

Chapter 11, “Using Locking Commands” introduces the concepts and
resources required for parallel query processing

Chapter 12, “Reporting on Locks” describes the use of parallel sorting for
queries and for creating indexes.

Chapter 13, “ Setting Space Management Properties’ presents an overview of
query tuning tools and describes how these tools can interact

Chapter 14, “Memory Use and Performance” describes different methods for
determining the current size of database objectsand for estimating their future
size.

Chapter 15, “Determining Sizes of Tables and Indexes,” describes different
methods for determining the current size of database objects and for estimating
their future size.

Chapter 16, “Maintenance Activities and Performance” explains the
commands that provide information about query execution.

Volume 2 - Optimizing and Abstract Plans

Chapter 17, “Adaptive Server Optimizer” explains the process of query
optimization, how statistics are applied to search arguments and joins for
queries.

Chapter 18, “ Advanced Optimizing Tools” describesadvanced tool sfor tuning
query performance

Chapter 19, “Query Tuning Tools” presents an overview of query tuning tools
and describes how these tools can interact.

Chapter 20, “Access Methods and Query Costing for Single Tables’ describes
how Adaptive Server accessestablesin queriesthat only involve onetable and
how the costs are estimated for various access methods.

About This Book

Chapter 21, “Accessing Methods and Costing for Joins and Subqueries’
describes how Adaptive Server accesses tables during joins and subqueries,
and how the costs are determined.

Chapter 22, “Parallel Query Processing” intoduces the concepts and resources
required for parallel query processing.

Chapter 23, “Parallel Query Optimization” provides an indepth look at the
optimization of parallel queries.

Chapter 24, “Parallel Sorting” describes the use of parallel sorting for queries
and creating indexes.

Chapter 25, “Tuning Asynchronous Prefetch” describes how asynchronous
prefetch improves performance for queries that perform large disk 1/0.

Chapter 26, “tempdb Performance Issues’ stresses the importance of the
temporary database , tempdb, and provides suggestions for improving its
performance.

Chapter 27, “Cursors and Performance” describes performance issues with
CuUrsors.

Chapter 28, “Introduction to Abstract Plans’ provides an overview of abstravt
plans and how they can be used to solve query optimization problems.

Chapter 29, “Abstract Query Plan Guide” provides an introduction to writing
abstract plans for specific types of queries and to using abstract plans to detect
changes in query optimization due to configuration or system changes.

Chapter 30, “ Creating and Using Abstract Plans” describesthe commands that
can be used to save and use abstract plans.

Chapter 31, “Managing Abstract Planswith System Procedures’ describesthe
system procedures that manage abstract plans and abstract plan groups.

Chapter 32, “Abstract Plan Language Reference” describes the abstract plan
language.

Volume 3 - Tools for Monitoring and Analyzing Performance

Chapter 33, “Using Statistics to Improve Performance” describes how to use
the update statistics command to create and update statistics.

Chapter 34, “Using the set statistics Commands” explains the commands that
provide information about execution.

Chapter 35, “Using set showplan” provides examples of showplan messages.

XV

Index

Related documents

XVi

Chapter 36, “ Statistics Tables and Displaying Statistics with optdiag”
describes the tables that store statistics and the output of the optdiag command
that displays the statistics used by the query optimizer.

Chapter 37, “ Tuning with dbcc traceon” explains how to use the dbcc traceon
commands to analyze query optimization problems.

Chapter 38, “Monitoring Performance with sp_sysmon™ describes how to use
a system procedure that monitors Adaptive Server performance.

The full index for all three volumesisin the back of Volume 3- Tools for
Monitoring and Analyzng Performance.

The following documents comprise the Sybase Adaptive Server Enterprise
documentation:

The release bulletin for your platform — contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

The Installation Guidefor your platform —describesinstallation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

Configuring Adaptive Server Enterprise for your platform — provides
instructions for performing specific configuration tasks for Adaptive
Server.

What's New in Adaptive Server Enterprise? — describes the new features
in Adaptive Server version 12.5, the system changes added to support
those features, and the changes that may affect your existing applications.

Transact-SQL User’s Guide — documents Transact-SQL, Sybase's
enhanced version of the relational database language. This manual serves
as atextbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

System Administration Guide — provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

About This Book

Reference Manual — contains detailed i nformation about all Transact-SQL
commands, functions, procedures, and datatypes. This manual also
contains alist of the Transact-SQL reserved words and definitions of
system tables.

Performance and Tuning Guide — explains how to tune Adaptive Server
for maximum performance. This manual includes information about
database design issuesthat affect performance, query optimization, how to
tune Adaptive Server for very large databases, disk and cache issues, and
the effects of locking and cursors on performance.

The Utility Guide—documentsthe Adaptive Server utility programs, such
asisql and bcp, which are executed at the operating system level.

The Quick Reference Guide — provides a comprehensive listing of the
names and syntax for commands, functions, system procedures, extended
system procedures, datatypes, and utilities in a pocket-sized book.
Available only in print version.

The System Tables Diagram —illustrates system tables and their entity
relationships in a poster format. Available only in print version.

Error Messages and Troubleshooting Guide — explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

Component Integration Services User’s Guide — explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

Javain Adaptive Server Enterprise—describeshow toinstall and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

Using Sybase Failover in a High Availability System— provides
instructions for using Sybase's Failover to configure an Adaptive Server
as acompanion server in ahigh availability system.

Using Adaptive Server Distributed Transaction Management Features—
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

EJB Server User’s Guide — explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

XA Interface Integration Guide for CICS, Encina, and TUXEDO —
providesinstructions for using Sybase’'s DTM XA interface with X/Open
XA transaction managers.

XVil

Other sources of
information

Sybase certifications
on the Web

XVili

Glossary — defines technical terms used in the Adaptive Server
documentation.

Sybase jConnect for JDBC Programmer’s Reference — describes the
jConnect for JDBC product and explainshow to useit to access data stored
in relationa database management systems.

Full-Text Search Specialty Data Sore User’s Guide—describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

Historical Server User’s Guide —describes how to use Historical Server to
obtain performance information for SQL Server and Adaptive Server.

Monitor Server User’s Guide — describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

Monitor Client Library Programmer’s Guide — describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

Technical Library CD contains product manuals and isincluded with your
software. The DynaText browser (downloadable from Product Manuals at
http://iwww.sybase.com/detail/1,3693,1010661,00.html) allowsyouto access
technical information about your product in an easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

Technical Library Product Manuals Web site isan HTML version of the
Technical Library CD that you can access using a standard Web browser.
In addition to product manuals, you will find links to the Technical
Documents Web site (formerly known as Tech Info Library), the Solved
Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Technical documentation at the Sybase Web site is updated frequently.

For the latest information on product certifications

1

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

About This Book

Conventions

Formatting SQL
statements

Font and syntax
conventions

3 Select aproduct name from the product list.
4 Select the Certification Report filter, specify atime frame, and click Go.
5 Click aCertification Report title to display the report.

For the latest information on EBFs and Updates

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (afree
service).

3 Specify atime frame and click Go.
4 Select aproduct.

5 Click an EBF/Update title to display the report.

To create a personalized view of the Sybase Web site (including support
pages)

Set up aMySybase profile. MySybaseisafree servicethat allowsyouto create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/

2 Click MySybase and create a MySybase profile.

This section describes conventions used in this manual.

SQL isafree-form language. There are no rules about the number of words
you can put on aline or where you must break aline. However, for readability,
all examples and syntax statements in this manual are formatted so that each

clause of a statement begins on anew line. Clauses that have more than one
part extend to additional lines, which are indented.

The font and syntax conventions used in this manual are shown in Table 1.0:

Table 1: Font and syntax conventions in this manual

Element

Example

Command names, command option names, utility — select
names, utility flags, and other keywordsarebold. sp_configure

Database names, datatypes, file names and path master database

names arein italics.

XixX

Element

Example

Variables, or words that stand for values that you
fill in, areinitalics.

sel ect
column_name

from
table_name

wher e
search_conditions

Parentheses areto be typed as part of the command.

conput e
row_aggr egat e
(

col um_nane

)

Curly bracesindicate that you must choose at least
one of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean choosing one or more of the
enclosed optionsis optional. Do not type the
brackets.

[anchovi es]

The vertical bar means you may select only one of
the options shown.

{di e_on_your_feet | Iive_on_your_knees
| live_on_your_feet}

The commameans you may choose as many of the
options shown asyou like, separating your choices
with commas to be typed as part of the command.

[extra_cheese, avocados, sour_creani

An ellipsis(...) means that you can repeat the last
unit as many times as you like.

buy thing = price [cash | check |
credit]

[, thing = price [cash | check |
credit]]...

You must buy at least one thing and give its price. You
may choose a method of payment: one of the items
enclosed in square brackets. You may also choose to buy
additional things: as many of them asyou like. For each
thing you buy, give its name, its price, and (optionally) a
method of payment.

e Syntax statements (displaying the syntax and all options for a command)
appear as follows:
sp_dropdevi ce [devi ce_nane]

or, for acommand with more options:

XX

About This Book

Case

Expressions

sel ect col um_nane
fromtabl e_nane
where search_conditions

In syntax statements, keywords (commands) arein normal font and identifiers
arein lowercase: normal font for keywords, italics for user-supplied words.

» Examples of output from the computer appear as follows:
0736 New Age Books Boston MA
0877 Bi nnet & Hardl ey Washi ngton DC
1389 Al godata Infosystens Berkel ey CA

In this manual, most of the examples arein lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same. Note that Adaptive Server’s sensitivity to the
case of database objects, such astable names, depends on the sort order
installed on Adaptive Server. You can change case sensitivity for single-byte
character sets by reconfiguring the Adaptive Server sort order.

See in the System Administration Guide for more information.
Adaptive Server syntax statements use the following types of expressions:

Table 2: Types of expressions used in syntax statements

Usage Definition
expression Can include constants, literals, functions, column identifiers, variables, or

parameters

logical expression

An expression that returns TRUE, FALSE, or UNKNOWN

constant expression An expression that aways returns the same value, such as “5+3" or “ABCDE”

float_expr Any floating-point expression or expression that implicitly convertsto afloating
value

integer_expr Any integer expression, or an expression that implicitly convertsto an integer value

numeric_expr Any numeric expression that returns asingle value

char_expr Any expression that returns a single character-type value

binary_expression

An expression that returns asingle binary or varbinary value

Examples

Many of the examples in this manual are based on a database called pubtune.
The database schema is the same as the pubs2 database, but the tables used in
the examples have more rows: titles has 5000, authors has 5000, and titleauthor
has 6250. Different indexes are generated to show different features for many
examples, and these indexes are described in the text.

XXi

If you need help

XXii

The pubtune database is not provided with Adaptive Server. Since most of the
exampl es show the results of commands such as set showplan and set statistics
i0, running the queriesin thismanual on pubs2 tableswill not producethe same
1/O results, and in many cases, will not produce the same query plans as those
shown here.

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

charTeErR 17 Adaptive Server Optimizer

This chapter introducesthe Adaptive Server query optimizer and explains
the steps performed when you run queries.

Topic Page
Definition 375
Object sizes are important to query tuning 377
Query optimization 378
Factors examined during optimization 379
Preprocessing can add clauses for optimizing 380
Guiddines for creating search arguments 385
Search arguments and useful indexes 386
Join syntax and join processing 392
Datatype mismatches and query optimization 395
Splitting stored procedures to improve costing 403

This chapter explains how costs for individual query clauses are
determined.

Chapter 20, “Access Methods and Query Costing for Single
Tables,” explainshow these costsare used to estimate thelogical, physical,
and total 1/0O cost for single table queries.

Chapter 21, “ Accessing Methods and Costing for Joins and Subqueries,”
explains how costsare used when queriesjoin two or moretables, or when
queriesinclude subqgueries.

Definition
The optimizer examines parsed and normalized queries, and information
about database objects. The input to the optimizer is a parsed SQL query

and statistics about the tables, indexes, and columns named in the query.
The output from the optimizer isaquery plan.

375

Definition

The query planiscompiled code that contains the ordered stepsto carry out the
query, including the access methods (table scan or index scan, type of join to
use, join order, and so on) to access each table.

Using statistics on tables and indexes, the optimizer predicts the cost of using
alternative access methods to resolve a particular query. It finds the best query
plan —the plan that isleast the costly in terms of 1/O. For many queries, there
are many possible query plans. Adaptive Server selects the least costly plan,
and compiles and executesiit.

Steps in query processing

Adaptive Server processes a query in these steps:

1 Thequery isparsed and normalized. The parser ensures that the SQL
syntax is correct. Normalization ensures that all the objects referenced in
the query exist. Permissions are checked to ensure that the user has
permission to access all tables and columnsin the query.

2 Preprocessing changes some search arguments to an optimized form and
adds optimized search arguments and join clauses.

3 Asthequery isoptimized, each part of the query isanalyzed, and the best
query plan is chosen. Optimization includes:

» Eachtableisanalyzed.

e The cost of using each index that matches a search argument or join
column is estimated.

* Thejoin order and join type are chosen.
* Thefinal access method is determined.
4 The chosen query plan is compiled.

The query is executed, and the results are returned to the user.

Working with the optimizer

376

The goal of the optimizer isto select the access method for each table that

reducesthetotal time needed to processaquery. The optimizer basesits choice
on the statistics available for the tables being queried and on other factors such
as cache strategies, cache size, and 1/O size. A major component of optimizer
decision-making is the statistics avail able for the tables, indexes, and columns.

CHAPTER 17 Adaptive Server Optimizer

In some situations, the optimizer may seem to make the incorrect choice of
access methods. Thismay betheresult of inaccurate or incompleteinformation
(such as out-of-date statistics). In other cases, additional analysis and the use
of special query processing options can determine the source of the problem
and provide solutions or workarounds.

The query optimizer uses I/O cost as the measure of query execution cost. The
significant costs in query processing are:

e Physical 1/0, when pages must be read from disk
e Logica /O, when pagesin cache are read for a query

See access methods and query costing.

Object sizes are important to query tuning

You should know the sizes of your tables and indexes to understanding query
and system behavior. At several stages of tuning work, you need size data to:

» Understand statistics io reports for a specific query plan.

Chapter 34, “Using the set statistics Commands,” describes how to use
statistics io to examine the I/O performed.

» Understand the optimizer’s choice of query plan. Adaptive Server’s cost-
based optimizer estimates the physical and logical 1/0 required for each
possible access method and chooses the cheapest method. If you think a
particular query plan is unusual, you can used dbcc traceon(302) to
determine why the optimizer made the decision. Thisoutput includes page
number estimates.

» Determineobject placement, based on the sizes of database objectsand the
expected /O patterns on the objects. You can improve performance by
distributing database objects across physical devices so that reads and
writes to disk are evenly distributed.

Object placement is described in Chapter 5, “Controlling Physical Data
Placement.”

» Understand changesin performance. If objects grow, their performance
characteristics can change. One exampleisatablethat isheavily used and
isusually 100 percent cached. If that table grows too large for its cache,
gueriesthat accessthetable can suddenly suffer poor performance. Thisis
particularly true for joins requiring multiple scans.

377

Query optimization

Do capacity planning. Whether you are designing a new system or
planning for growth of an existing system, you need to know the space
requirements to plan for physical disks and memory needs.

Understand output from Adaptive Server Monitor and from sp_sysmon
reports on physical /0.

Seethe Adaptive Server System Administration Guide for more information on
sizing.

Query optimization

To understand the optimization of a query, you need to understand how the
guery accesses database objects, the sizes of the objects, and theindexes on the
tables to determine whether it is possible to improve the query’s performance.

378

Some symptoms of optimization problems are:

A query runs more slowly than you expect, based on indexes and table
size.

A query runs more slowly than similar queries.
A query suddenly starts running more slowly than usual.

A query processed within a stored procedure takes longer than when it is
processed as an ad hoc statement.

The query plan shows the use of atable scan when you expect it to use an
index.

Some sources of optimization problems are:

Statistics have not been updated recently, so the actual data distribution
does not match the values used by Adaptive Server to optimize queries.

The rows to be referenced by a given transaction do not fit the pattern
reflected by the index statistics.

Anindex isbeing used to access alarge portion of the table.
where clauses are written in aform that cannot be optimized.
No appropriate index exists for acritical query.

A stored procedure was compiled before significant changes to the
underlying tables were performed.

CHAPTER 17 Adaptive Server Optimizer

Factors examined during optimization

Query plans consist of retrieval tactics and an ordered set of execution stepsto
retrieve the data needed by the query. In developing query plans, the optimizer
examines:

The size of each table in the query, both in rows and data pages, and the
number of OAM and allocation pages that need to be read.

Theindexesthat exist onthetablesand columnsused in the query, thetype
of index, and the height, number of leaf pages, and cluster ratios for each
index.

Whether the index covers the query, that is, whether the query can be
satisfied by retrieving data from the index leaf pages without having to
accessthe data pages. Adaptive Server can useindexesthat cover queries,
even if no where clauses are included in the query.

The density and distribution of keysin the indexes.

The size of the available data cache or caches, the size of 1/0 supported by
the caches, and the cache strategy to be used.

The cost of physical and logical reads.

Join clausesand the best join order and join type, considering the costs and
number of scans required for each join and the usefulness of indexesin
limiting the 1/O.

Whether building aworktable (an internal, temporary table) with an index
on the join columns would be faster than repeated table scans if there are
no useful indexes for the inner tablein ajoin.

Whether the query contains a max or min aggregate that can use an index
to find the value without scanning the table.

Whether the data or index pages will be needed repeatedly to satisfy a
guery such as ajoin or whether afetch-and-discard strategy can be
employed because the pages need to be scanned only once.

For each plan, the optimizer determinesthe total cost by computing the logical
and physical 1/0s. Adaptive Server then uses the cheapest plan.

Stored procedures and triggers are optimized when the object isfirst executed,
and the query plan is stored in the procedure cache. If other users execute the
same procedure while an unused copy of the plan resides in cache, the
compiled query plan is copied in cache, rather than being recompiled.

379

Preprocessing can add clauses for optimizing

Preprocessing can add clauses for optimizing

After aquery is parsed and normalized, but before the optimizer beginsits
analysis, the query is preprocessed to increase the number of clauses that can
be optimized:

Some search arguments are converted to equivalent arguments.

Some expressions used as search arguments are preprocessed to generate
aliteral value that can be optimized.

Search argument transitive closure is applied where possible.
Join column transitive closure is applied where possible.

For some queriesthat use or, additional search argumentscan be generated
to provide additional optimization paths.

The changes made by preprocessing are transparent unless you are examining
the output of query tuning tools such as showplan, statistics io, or dbcc
traceon(302). If you run queries that benefit from the addition of optimized
search arguments, you see the added clauses:

In additional costing blocks for the added clauses to be optimized in dbcc
traceon(302) output.

In showplan output, you may see “Keys are” messages for tables where
you did not specify a search argument or ajoin.

Converting clauses to search argument equivalents

Preprocessing looksfor some query clausesthat it can convert to the form used
for search arguments (SARGS). These arelisted in Table 17-1.

Table 17-1: Search argument equivalents

Clause Conversion

between Converted to >= and <= clauses. For example, between 10 and 20 is
converted to >= 10 and <= 20.

like If the first character in the pattern is a constant, like clauses can be

converted to greater than or less than queries. For example, like "sm%"
becomes >="sm" and < "sn".

If the first character isawildcard, a clause such as like "%x" cannot use an
index for access, but histogram values can be used to estimate the number
of matching rows.

380

CHAPTER 17 Adaptive Server Optimizer

Clause Conversion

in (values_list) Converted to alist of or queries, that is, int_col in (1, 2, 3) becomesint_col
=1orint_col=2orint_col =3.

Converting expressions into search arguments

Many expressions are converted into literal search strings before query
optimization. In the following examples, the processed expressions are shown
as they appear in the search argument analysis of dbcc traceon(302) output:

Operation Example of where Clause Processed expression
Implicit nuneric_col =5 nuneric_col = 5.0
conversion
Conversion int_colum = convert(int, "77") int_colum = 77
function
Arithmetic salary = 5000%12 salary = 6000

0
Math functions width = sqrt(900) width = 30
String functions shoe_wi dth = replicate("E", 5) shoe_wi dth = "EEEEE"
String full _nane = "Fred" +" " + "Sinpson" full_name = "Fred Si npson"
concatenation
Date functions week = datepart(wk, "5/22/99") week = 21

Note getdate() cannot be optimized.

These conversions allow the optimizer to use the histogram values for a
column rather than using default selectivity values.

The following are exceptions:
¢ The getdate function
¢ Most system functions such as object_id or object_name

These are not converted to literal values before optimization.

Search argument transitive closure

Preprocessing appliestransitive closure to search arguments. For example, the
following query joinstitles and titleauthor on title_id and includes a search
argument on titles.title_id:

381

Preprocessing can add clauses for optimizing

sel ect au_l nane, title
fromtitles t, titleauthor ta, authors a
where t.title id =ta.title_id

and a.au_id = ta.au_id

and t.title_id = "T81002"

This query is optimized as if it also included the search argument on
titteauthor.title_id:

sel ect au_l nane, title
fromtitles t, titleauthor ta, authors a
where t.title_id = ta.title_id

and a.au_id = ta.au_id

and t.title_id = "T81002"

and ta.title id = "T81002"

With this additional clause, the optimizer can use index statistics on
titles.title_id to estimate the number of matching rows in the titleauthor table.
The more accurate cost estimates improve index and join order selection.

Join transitive closure

382

Preprocessing appliestransitive closureto join columnsfor normal equijoinsif
join transitive closure is enabled at the server or session level. The following
query specifiesthe equijoin of t1.c11 andt2.c21, and the equijoin of t2.c21 and
t3.c31:

sel ect *

fromtl, t2, t3
where tl1l.cll1 = t2.c21
and t2.¢c21 = t3.c31
and t3.¢31 =1

Without join transitive closure, the only join orders considered are (i1, t2, t3),
(t2, t1, t3), (t2, t3, t1),and (t3, t2, t1). By adding the join on t1.c11 = t3.31, the
optimizer expandsthelist of join orderswith these possibilities: (t1, t3, t2) and
(13, t1, t2). Search argument transitive closure applies the condition specified
by t3.c31 = 1 to the join columns of t1 and t2.

Transitive closure is used only for normal equijoins, as shown above. Join
transitive closure is not performed for:

e Non-equijoins; for example, t1.c1 > t2.c2
« Equijoinsthat include an expression; for example, tl.c1 =t2.c1 +5

e Equijoins under an or clause

CHAPTER 17 Adaptive Server Optimizer

e Outer joins; for exampletl.c11l *=t2.c2 or left join or right join
e Joins across subquery boundaries
e Joins used to check referential integrity or the with check option on views

¢ Columns of incompatible datatypes

Enabling join transitive closure

A System Administrator can enable join transitive closure at the server level
with the enable sort-merge joins and JTC configuration parameter. This
configuration parameter also enables mergejoins. At the session level, set jtc
on enables join transitive closure, and takes precedence over the server-wide
setting. For more information on the types of querieslikely to benefit from the
use of join transitive closure.

See “Enabling and disabling join transitive closure” on page 418.

Predicate transformation and factoring

Predicate transformation and factoring improves the number of choices
available to the optimizer. It adds clauses that can be optimized to a query by
extracting clauses from blocks of predicates linked with or into clauses linked
by and. These additional optimized clauses mean that there are more access
paths available for query execution. The original or predicates are retained to
ensure query correctness.

During predicate transformation:

1 Simple predicates (joins, search arguments, and in lists) that are an exact
match in each or clause are extracted. In the sample query, this clause
matches exactly in each block, so it is extracted:

t.pub_id = p.pub_id

between clauses are converted to greater-than-or-equal and less-than-or-
equal clauses before predicate transformation. The sample query above
usesbetween 15in both query blocks (though the end ranges aredifferent).
The equivalent clauseis extracted by step 1:

price >=15

2 Search arguments on the same table are extracted; all termsthat reference
the sametable aretreated asasingl e predicate during expansion. Both type
and price are columnsin thetitles table, so the extracted clauses are:

383

Preprocessing can add clauses for optimizing

Example

384

(type = "travel" and price >=15 and price <= 30)
or
(type = "business" and price >= 15 and price <= 50)

in lists and or clauses are extracted. If there are multiplein listsfor atable
within one of the blocks, only the first is extracted. The extracted lists for
the sample query are:

p.pub_id in ("P220", "P583", "P780")
or
p.pub_id in ("P651", "P066", "P629")

These steps can overlap and extract the same clause, so any duplicates are
eliminated.

Each generated term is examined to determine whether it can be used as
an optimized search argument or ajoin clause. Only those termsthat are
useful in query optimization are retained.

The additional clauses are added to the existing query clauses that were
specified by the user.

All clauses optimized in this query are enclosed in the or clauses:

sel ect p.pub_id, price
from publishers p, titles t

where (
t.pub_id = p.pub_id
and type = "travel"

and price between 15 and 30
and p.pub_id in ("P220", "P583", "P780")
)

or (
t.pub_id = p.pub_id
and type = "busi ness"

and price between 15 and 50
and p.pub_id in ("P651", "P066", "P629")
)

Predicate transformation pulls clauses linked with and from blocks of clauses
linked with or, such as those shown above. It extracts only clauses that occur
in all parenthesized blocks. If the example above had a clause in one of the
blockslinked with or that did not appear in the other clause, that clause would
not be extracted.

CHAPTER 17 Adaptive Server Optimizer

Guidelines for creating search arguments

Follow these guidelines when you write search arguments for your queries:

Avoid functions, arithmetic operations, and other expressions on the
column side of search clauses. When possible, move functions and other
operations to the expression side of the clause.

Avoid incompatible datatypes for columns that will be joined and for
variables and parameter used as search arguments.

See* Datatype mismatches and query optimization” on page 395 for more
information.

Use the leading column of a composite index as a search argument. The
optimization of secondary keys provides less performance.

Use all the search arguments you can to give the optimizer as much as
possible to work with.

If aquery hasmorethan 102 predicatesfor atable, put the most potentially
useful clauses near the beginning of the query, since only the first 102
SARGs on each table are used during optimization. (All of the search
conditions are used to qualify the rows.)

Some queries using > (greater than) may perform better if you can rewrite
them to use >= (greater than or equal to). For example, this query, with an
index on int_col uses the index to find the first value where int_col equals
3, and then scans forward to find the first value that is greater than 3. If
there are many rows where int_col equals 3, the server has to scan many
pages to find the first row whereint_col is greater than 3:

select * fromtablel where int_col > 3
It is probably more efficient to write the query like this:
select * fromtablel where int_col >= 4

This optimization is more difficult with character strings and floating-
point data. You need to know your data.

Check showplan output to see which keys and indexes are used.

If you expect an index is not being used when you expect it to be, check
dbcc traceon(302) output to seeif the optimizer is considering the index.

385

Search arguments and useful indexes

Search arguments and useful indexes

It isimportant to distinguish between where and having clause predicates that
can be used to optimize the query, and those that are used later during query
processing to filter the rows to be returned.

Search arguments can be used to determine the access path to the data rows
when acolumnin thewhere clause matches aleading index key. Theindex can
be used to locate and retrieve the matching data rows. Once the row has been
located in the data cache or has been read into the data cache from disk, any
remaining clauses are applied.

For example, if the authors table has on an index on au_Iname and another on
city, either index can be used to locate the matching rows for this query:

sel ect au_l nane, city, state
from aut hors

where city = "Wshi ngton"
and au_lnane = "Catrmul | "

The optimizer uses statistics, including histograms, the number of rowsin the
table, the index heights, and the cluster ratios for the index and data pages to

determine which index provides the cheapest access. The index that provides
the cheapest access to the data pages is chosen and used to execute the query,
and the other clauseis applied to the data rows once they have been accessed.

Search argument syntax

386

Search arguments (SARGS) are expressionsin one of these forms:
<column> <operator> <expression>
<expression> <operator> <column>
<column> is null

Where:

e columnisonly acolumn name. If functions, expressions, or concatenation
are added to the column name, an index on the column cannot be used.

e operator must be one of the following:

= > < >= <= I> 1< <> I= 1is null

e expression iseither aconstant, or an expression that evaluatesto a
constant. The optimizer usesthe index statistics differently, depending on
whether the value of the expression is known at compile time:

CHAPTER 17 Adaptive Server Optimizer

e If expression isaknown constant or can be converted to aknown
constant during preprocessing, it can be compared to the histogram
values stored for an index to return accurate row estimates.

¢ Ifthevaue of expression isnot known at compiletime, the optimizer
usesthetotal density to estimate the number of rowsto be returned by
the query. Thevalue of variables set in aquery batch or parameters set
within a stored procedure cannot be known until execution time.

e If the datatype of the expression is not compatible with the datatype
of the column, an index cannot be used, and is not considered.

See “ Datatype mismatches and query optimization” on page 395 for
more information.

Nonequality operators

The nonequality operators, < > and !=, are special cases. The optimizer checks
for covering nonclustered indexesif the column is indexed and uses a
nonmatching index scan if an index coversthe query. However, if the index
does not cover the query, the table is accessed via a table scan.

Examples of SARGs

The following are some examples of clauses that can be fully optimized. If
there are statistics on these columns, they can be used to help estimate the
number of rowsthe query will return. If there are indexes on the columns, the
indexes can be used to access the data:

au_l name = "Bennett"

price >= $12.00

advance > $10000 and advance < $20000
au_l name like "Ben% and price > $12.00

The following search arguments cannot be optimized:

advance * 2 = 5000 /*expression on colum side
not permtted */
substring(au_l nane, 1,3) = "Ben" /* function on
colum name */

These two clauses can be optimized if written in this form:

advance = 5000/ 2
au_l name |ike "Ben%

Consider this query, with the only index on au_Iname:

387

Search arguments and useful indexes

sel ect au_l nane, au_fnane, phone
from aut hors
where au_| nane = "Cerl and"
and city = "San Franci sco"

The clause qualifies as a SARG:
au_|l nane = "Cerl and"
e Thereisanindex on au_Iname.
e Thereare no functions or other operations on the column name.
e The operator is avalid SARG operator.
e The datatype of the constant matches the datatype of the column.
city = "San Francisco"

This clause matches all the criteriaabove except the first—thereisno index on
the city column. In this case, theindex on au_Iname is used for the query. All
data pages with a matching last name are brought into cache, and each
matching row is examined to see if the city matches the search criteria.

How statistics are used for SARGS

388

When you create an index, statistics are generated and stored in system tables.
Some of the statistics relevant to determining the cost of search argumentsand
joinsare:

e Satisticsabout theindex: the number of pages and rows, the height of the
index, the number of |eaf pages, the average leaf row size.

e Statistics about the datain the column:

* A histogram for the leading column of theindex. Histograms are used
to determinethe selectivity of the SARG, that is, how many rowsfrom
the table match a given value.

» Density values, measuring the density of keysin the index.

» Cluster ratios that measure the fragmentation of data storage and the
effectiveness of large I/0.

Only a subset of these statistics (the number of leaf pages, for example) are
maintained during query processing. Other statistics are updated only when
you run update statistics or when you drop and re-create the index. You can
display these statistics using optdiag.

CHAPTER 17 Adaptive Server Optimizer

Histogram cells

Density values

See Chapter 36, “ Statistics Tables and Displaying Statistics with optdiag.”

When you create an index, a histogram is created on the first column of the
index. The histogram stores information about the distribution of valuesin the
column. Then you can use update statistics to generate statistics for the minor
keys of a compound index and columns used in unindexed search clauses.

The histogram for a column contains data in a set of steps or cells. You can
specify the number of cells can when the index is created or when the update
statistics command is run. For each cell, the histogram stores a column value
and aweight for the cell.

There are two types of cellsin histograms:

* A frequency cell represents a value that has a high proportion of
duplicatesin the column. Theweight of afrequency cell timesthe number
of rowsin the table equal s the number of rows in the table that match the
valuefor thecell. If acolumn doesnot have highly duplicated values, there
are only range cellsin the histogram.

» Rangecdlsrepresent arange of values. Range cell weights and the range
cell density are used for estimating the number of rows to be returned
when search argument values falls within arange cell.

For more information on histograms, see “Histogram displays’ on page 851.

Density is ameasure of the average proportion of duplicate keysin the index.
It varies between 0 and 1. An index with N rows whose keys are unique has a
density of 1/N; an index whose keys are all duplicates of each other has a
density of 1.

For indexes with multiple keys, density values are computed and stored for
each prefix of keysin theindex. That is, for an index on columns A, B, C, D,
densities are stored for:

e A

- AB
 ABC
 A/BCD

389

Search arguments and useful indexes

Range cell density and total density
For each prefix subset, two density values are stored:
* Range cell density, used for search arguments
e Total density, used for joins

Range cell density represents the average number of duplicates of all values
that are represented by range cellsin the histogram. Total density representsthe
average number of duplicatesfor all values, thosein both frequency and range
cells. Total density is used to estimate the number of matching rows for joins
and for search arguments whose value is not known when the query is
optimized.

How the optimizer uses densities and histograms

When the optimizer analyzes a SARG, it uses the histogram values, densities,
and the number of rowsin the table to estimate the number of rows that match
the value specified in the SARG:

e |f the SARG value matches afrequency cell, the estimated number of
matching rowsis equal to the weight of the frequency cell multiplied by
the number of rowsin the table. This query includes a data value with a
high number of duplicates, so it matches afrequency cell:

where authors.city = "New YorKk"

If the weight of the frequency cell is#.015606, and the authors table has
5000 rows, the optimizer estimates that the query returns 5000 * .015606
=78 rows.

« |If the SARG value falls within arange cell, the optimizer uses the range
cell density to estimate the number of rows. For example, aquery on acity
valuethat fallsin arange cell, with arange cell density of .000586 for the
column, would estimate that 5000 * .000586 = 3 rows would be returned.

e For range queries, the optimizer adds the weights of all cells spanned by
therange of values. When the beginning or end of therangefallsinarange
cell, the optimizer uses interpolation to estimate the number of rows from
that cell that are included in the range.

Using statistics on multiple search arguments

When there are multi ple search arguments on the sametabl e, the optimizer uses
statistics to combine the selectivity of the search arguments.

390

CHAPTER 17 Adaptive Server Optimizer

This query specifies search arguments for two columnsin the table:

select title_id
fromtitles

where type = "news"
and price < $20

With an index on type, price, the selectivity estimates vary, depending on
whether statistics have been created for price:

« Withonly statistics for type, the optimizer uses the frequency cell weight
for type and a default selectivity for price. The selectivity for type is
#.106600, and the default selectivity for an open-ended range query is
33%. The number of rows to be returned for the query is estimated using
.106600 * .33, or .035178. With 5000 rowsin thetable, the estimateis 171
rows.

See Table 17-2 for the default values used when statistics are not avail able.

e With statistics added for price, the histogram is used to estimate that
.133334 rows match the search argument on price. Multiplied by the
selectivity of type, the result is.014213, and the row estimateis 71 rows.

The actual number of rows returned is 53 rows for this query, so the additional
statistics improved the accuracy. For this simple single-table query, the more
accurate selectivity did not change the access method, the index on type, price.
For some single-table queries, however, the additional statistics can help the
optimizer make a better choice between using atable scan or using other
indexes. Injoin queries, having more accurate statistics on each table can result
in more efficient join orders.

Default values for search arguments

When statistics are not available for a search argument or when the value of a
search argument is not known at optimization, the optimizer uses default
values. These values are shown in Table 17-2.

391

Join syntax and join processing

Table 17-2: Density approximations for unknown search arguments

Operation Type Operator Density Approximation
Equality = Total density, if stetistics are available
for the column, or 10%
Open-ended range <, <=, 33%
> 0r >=
Closed range between 25%

SARGs using variables and parameters

Since the optimizer computes its estimates before a query executes, it cannot
know the value of avariable that is set in the batch or procedure. If the value
of avariableisnot known at compiletime, the optimizer usesthe default values
shown in Table 17-2

For example, the value of @city is set in this batch:

declare @ity varchar(25)
select @ity = city frompublishers
where pub_name = "Brave Books"
sel ect au_l nane from authors where city = @ity

The optimizer usesthetotal density, .000879, and estimatesthat 4 rowswill be
returned; the actual number of rows could be far larger.

A similar problem exists when you set the values of variables inside a stored
procedure. In this case, you can improve performance by splitting the
procedure: set the variable in the first procedure and then call the second
procedure, passing the variables as parameters. The second procedure can then
be optimized correctly.

See “ Splitting stored procedures to improve costing” on page 403 for an
example.

Join syntax and join processing

Join clauses take this form:
tabl el. col um_nane <operator> tabl e2. col um_nane

Thejoin operators are:

392

CHAPTER 17 Adaptive Server Optimizer

And:

tablel [left | right] join table2
on col um_nane = col um_nane
tabl el inner join table2
on col um_nane = col um_nane

When joins are optimized, the optimizer can only consider indexes on column
names. Any type of operator or expression in combination with the column
name means that the optimizer does not eval uate using an index on the column
as a possible access method. If the columnsin the join are of incompatible
datatypes, the optimizer can consider an index on only one of the columns.

How joins are processed
When the optimizer creates a query plan for ajoin query:

» It evaluatesindexesfor each table by estimating the I/O required for each
possible index and for a table scan.

* It determinesthejoin order, basing the decision on thetotal cost estimates
for the possible join orders. It estimates costs for both nested-loop joins
and sort-mergejoins.

* If no useful index exists on the inner table of ajoin, the optimizer may
decide to build atemporary index, a process called refor matting.

See “Reformatting strategy” on page 492.
* It determinesthe I/O size and caching strategy.

» It also comparesthe cost of serial and parallel execution, if parallel query
processing is enabled.

See Chapter 23, “Parallel Query Optimization,” for more information.

Factors that determine costs on single-table selects, such as appropriate
indexing, search argument sel ectivity, and density of keys, become much more
critical for joins.

When statistics are not available for joins

If statistics are not available for acolumnin ajoin, the optimizer uses default
values;

393

Join syntax and join processing

Operator type Examples Default selectivity
Equality tl.cl =tl.c2 Vrowsin smaller table
Nonequality tl.cl > tl.c2 33%

tl.cl >=t1.c2
tl.cl <tl.c2
tl.cl <=t1l.c2

For example, in the following query, the optimizer uses 1/500 for the join
selectivity for both tablesif there are no statistics for either city column, and
stores has 500 rows and authors has 5000 rows:

sel ect au_fnane, au_l name, stor_nane
fromauthors a, stores s
where a.city = s.city

Density values and joins

When statistics are available on ajoin column, the total density is used to
estimate how many rows match each join key. If the authors table has 5000
rows, and the total density for the city column is.000879, the optimizer
estimatesthat 5000 * .000879 = 4 rowswill bereturned from authors each time
ajoin on the city column matches arow from the other table.

Multiple column joins

When ajoin query specifies multiple join columns on two tables, and thereis
acomposite index on the columns, the composite total density is used. For
example, if authors and publishers each has an index on city, state, the
composite total density for city, state is used for each table in this query:

sel ect au_l nane, pub_nane
from authors a, publishers p
where a.city = p.city

and a.state = p.state

Search arguments and joins on a table

When there are search arguments and joins on a table, the selectivities of the
columns are combined during join costing to estimate the number of rowsmore
accurately.

394

CHAPTER 17 Adaptive Server Optimizer

The following example joins authors and stores on both the city and state
columns. There is a search argument on authors.state, S0 search argument
transitive closure adds the search argument for stores.state table also:

sel ect au_fnane, au_l nane, stor_nane
fromauthors a, stores s

where a.city = s.city

and a.state s.state

and a.state "GA"

If thereisan index on city for each table, but no statistics availablefor state, the
optimizer uses the default search argument selectivity (10%) combined with
thetotal density for city. This overestimates the number of rows that match the
search argument for this query, for a state with more rows that match a search
argument on state, it would underestimate the number of rows. When statistics
exist for state on each table, the estimate of the number of qualifying rows
improves, and overall costing for the join query improves also.

Datatype mismatches and query optimization

One common problem when queriesfail to use indexes as expected is datatype
mismatches. Datatype mismatches occur:

e With search clauses using variables or stored procedure parameters that
have a different datatype than the column, for example:

where int_col = @mney_paraneter

* Injoinquerieswhenthe columnsbeing joined have different datatypes, for
example:

where tabl eA int_col = tabl eB. nbney_col

Datatype mismatches lead to optimization problems when they prevent the
optimizer from considering an index. The most common problems arise from:

» Comparisons between the integer types, int, smallint and tinyint
» Comparisons between money and smallmoney
» Comparisons between datetime and smalldatetime

» Comparisonsbetween numeric and decimal typesof differing precision and
scale

395

Datatype mismatches and query optimization

e Comparisons between numeric or decimal types and integer or money
columns

To avoid problems, use the same datatype (including the same precision and
scale) for columns that are likely join candidates when you create tables. Use
amatching datatype for any variables or stored procedure parameters used as
search arguments. The following sections detail the rules and considerations
applied when the same datatypeis not used, and provide some troubl eshooting
tips.

Overview of the datatype hierarchy and index issues

The datatype hierarchy controls the use of indexes when search arguments or
join columns have different datatypes. Thefollowing query printsthe hierarchy
values and datatype names:

sel ect hierarchy, nane from systypes order by 1
hi erarchy name

floatn

fl oat
datetimm
datetine

r eal
numericn
numeric
deci mal n
deci mal
noneyn
noney
smal | noney
smal | dateti ne
intn

i nt
smal | i nt
tinyint
bi t

uni var char
uni char
reserved
var char
sysnane
nvar char
char

nchar

O©CoOoO~NOOOOr~WNERE

NNNNNNNRRRRRRERRERRE
WWNRNNRFPOOONOUNWNRO

396

CHAPTER 17 Adaptive Server Optimizer

24 varbi nary
24 tinmestanp
25 binary

26 text

27 i mage

If you have created user-defined datatypes, they are also listed in the query
output, with the corresponding hierarchy values.

The general ruleisthat when different datatypes are used, the
systypes.hierarchy value determines whether an index can be used.

For search arguments, the index is considered when the column’s datatype
is same as, or precedes, the hierarchy value of the parameter or variable.

For ajoin, theindex is considered only on the column whose
systypes.hierarchy valueisthe same asthe other column'’s, or precedesthe
other column’sin the hierarchy.

When char and unichar datatypes are used together, char is converted to
unichar.

The exceptions are;

Comparisons between char and varchar, unichar and univarchar, or between
binary and varbinary datatypes. For example, although their hierarchy
values are 23 and 22 respectively, char and varchar columns are treated as
the same datatype for index consideration purposes. Theindex is
considered for both columnsin thisjoin:

where t1l.char_colum = t2.varchar_col umm

char columns that accept NULL values are stored as varchar, but indexes
can till be used on both columns for joins.

The null type of the column has no effect, that is, although float and floatn
have different hierarchy values, they are alwaystreated as the same
datatype.

Comparisons of decimal or numeric types al so take precision and scaleinto
account. Thisincludes comparisons of numeric or decimal typesto each
other, and comparisons of numeric or decimal to other datatypes such asint
Or money.

See “Comparison of numeric and decimal datatypes’ on page 398 for
more information.

397

Datatype mismatches and query optimization

Comparison of numeric and decimal datatypes

When a query joins columns of numeric or decimal datatypes, an index can be
used when both of these conditions are true:

The scale of the column being considered for ajoin equals or exceeds the
scale of the other join column, and

The length of the integer portion of the column equals or exceeds the
length of the other column’s integer portion.

Here are some examples of when indexes can be considered:

Datatypes in the join Indexes considered

numeric(12,4) and Index considered only for numeric(16,4), the

numeric(16,4) integer portion of numeric(12,4) is smaller.

numeric(12,4) and Neither index is considered, integer portion is

numeric(12,8) smaller for numeric(12,8) and scale is smaller
for numeric(12,4).

numeric(12,4) and Both indexes are considered.

numeric(12,4)

Comparing numeric types to other datatypes

When comparing numeric and decimal columns to columns of other numeric
datatypes, such as money or int:

398

numeric and decimal precedeinteger and money columnsin the hierarchy,
so the index on the numeric or decimal column is the only index
considered.

The precision and scal e requirements must be met for the numeric or
decimal index to be considered. The scale of the numeric column must be
equal to, or greater than, the scale of the integer or money column, and the
number of digitsin the integer portion of the numeric column must be
equal to or greater than the maximum number of digits usable for the
integer or money column.

The precision and scale of integer and money typesis shown in Table 17-3.

CHAPTER 17 Adaptive Server Optimizer

Table 17-3: Precision and scale of integer and money types

Datatype Precision, scale
tinyint 3,0

smallint 50

int 10,0

smallmoney 10,4

money 19,4

Datatypes for parameters and variables used as SARGs

When declaring datatypes for variables or stored procedure parametersto be
used as search arguments, match the datatype of the column in the variable or
parameter declaration to ensure the use of an index. For example:

declare @nt_var int
select @nt_var = 50

sel ect *

fromtl

where int_col = @nt_var

Use of theindex depends on the precedence of datatypesin the hierarchy. The
index on a column can be used only if the column'’s datatype precedes the
variabl€e's datatype. For example, int precedes smallint and tinyint in the
hierarchy. Here are just the integer types:

hi erarchy nane

15 int
16 smal lint
17 tinyint

If avariable or parameter has a datatype of smallint or tinyint, an index on an int
column can be used for aquery. But an index on atinyint column cannot be used
for an int parameter.

Similarly, money precedesint. If avariable or parameter of money iscompared
to an int column, an index on the int column cannot be used.

This eliminates issues that could arise from truncation or overflow. For
example, it would not be useful or correct to attempt to truncate the money
valueto 5 in order to use an index on int_col for this query:

decl are @mney_var noney
sel ect @money_var = $5.12
select * fromtl where int_col = @mwney_var

399

Datatype mismatches and query optimization

Troubleshooting datatype mismatch problems fo SARGs

If there is a datatype mismatch problem with a search argument on an indexed
column, the query can use another index if there are other search arguments or
it can perform atable scan. showplan output displays the access method and
keys used for each table in a query.

You can use dbcc traceon(302) to determine whether an index is being
considered. For example, using an integer variable as a search argument on
int_col produces the following output:

Sel ecting best index for the SEARCH CLAUSE:
t1l.int_col = unknown-val ue

SARGis a local variable or the result of a function or
an expression, using the total density to estinate
selectivity.

Esti mated selectivity for int_col,
selectivity = 0.020000.

Using an incompatible datatype such as money for avariable used as a search
argument on aninteger column does not produce a“ Selecting best index for the
SEARCH CLAUSE” block in dbcc traceon(302) output, indicating that the
index isnot being considered, and cannot be used. If anindex isnot used asyou
expect in aquery, looking for this costing section in dbcc traceon(302) output
should be one of your first debugging steps.

The “unknown-value” and the fact that the total density is used to estimate the
number of rowsthat match this search argument isdue to the fact that the value
of the variable was set in the batch; it is not a datatype mismatch problem.

See “SARGs using variables and parameters’ on page 392 for more
information.

Compatible datatypes for join columns

400

The optimizer considers an index for joined columns only when the column
types are the same or when the datatype of the join column precedes the other
column’s datatype in the datatype hierarchy. This means that the optimizer
considers using the index on only one of the join columns, limiting the choice
of join orders.

For example, this query joins columns of decimal and int datatypes:

sel ect *

CHAPTER 17 Adaptive Server Optimizer

fromtl, t2
where t1.decinmal _col = t2.int_col

decimal precedesint in the hierarchy, so the optimizer can consider an index on
t1.decimal_col, but cannot use an index ont2.int_col. Theresult islikely to be a
table scan of t2, followed by use of the index on t1.decimal_col.

Table 17-4 shows how the hierarchy affectsindex choice for some commonly

problematic datatypes.

Table 17-4: Indexes considered for mismatched column datatypes
Join column types Index considered on column of type
money and smallmoney money
datetime and smalldatetime datetime
int and smallint int
int and tinyint int
smallint and tinyint smallint

Troubleshooting datatype mismatch problems for joins

If you suspect that an index is not being considered on one side of ajoin dueto
datatype mismatches, use dbcc traceon(302). In the output, ook for “ Selecting
best index for the JOIN CLAUSE”. If datatypes are compatible, you seetwo of
these blocks for each join; for example:

Sel ecting best index for the JO N CLAUSE:
tl.int_col =1t2.int_col

And later in the output for the other table in the join:

Sel ecting best index for the JO N CLAUSE:
t2.int_col =t1l.int_col

For a query that compares incompatible datatypes, for example, comparing a
decimal column to an int, column, there is only the single block:

Sel ecting best index for the JON CLAUSE:
tl.decinmal _col = t2.int_col

This means that the join costing for using an index with t2.int_col as the outer
column is not performed.

Suggestions on datatypes and comparisons
To avoid datatype mismatch problems:

401

Datatype mismatches and query optimization

* When you create tables, use the same datatypes for columns that will be
joined.
e |If columns of two frequently joined tables have different datatypes,

consider using alter table...modify to change the datatype of one of the
columns.

« Usethe column’s datatype whenever declaring variables or stored
procedure parameters that will be used as search arguments.

e Consider user-defined datatype definitions. Once you have created
definitions with sp_addtype, you can use them in commands such create
table, alter table, and create procedure, and for datatype declarations.

« For some queries where datatype mismatches cause performance
problems, you may be able to use the convert function so that indexes are
considered on the other table in the join. The next section describes this
work around.

Forcing a conversion to the other side of a join

402

If ajoin between different datatypesis unavoidable, and it impacts
performance, you can, for some queries, force the conversion to the other side
of thejoin. In thefollowing query, anindex on smallmoney_col cannot be used,
so the query performs a table scan on huge_table:

sel ect *

fromtiny_table, huge_table

where tiny_tabl e. money_col =
huge_t abl e. smal | roney_col

Performance improvesif theindex on huge_table.smallmoney_col can be used.
Using the convert function on the money column of the small table allows the
index on the large table to be used, and atable scan is performed on the small
table:

sel ect *

fromtiny_table, huge_table

where convert (snal |l noney, tiny_tabl e. nroney_col) =
huge_t abl e. smal | roney_col

This workaround assumes that there are no values in tinytable.money_col that
are large enough to cause datatype conversion errors during the conversion to
smallmoney. If there are valueslarger than the maximum value for smalimoney,
you can salvage this solution by adding a search argument specifying the
maximum values for a smallmoney column:

CHAPTER 17 Adaptive Server Optimizer

sel ect snal | noney_col, noney_col

fromtiny_table , huge_table

where convert (snal | noney, tiny_tabl e. noney_col) =
huge_t abl e. smal | roney_col

and tiny_table. nmoney_col <= 214748. 3647

Converting floating-point and numeric data can change the meaning of some
queries. This query compares integers and floating-point numbers:

sel ect *
fromtabl, tab2
where tabl.int_colum = tab2.float_col um

In the query above,you cannot use an index on int_column. This conversion
forcesthe index accessto tab1, but also returns different results than the query
that does not use convert:

sel ect *
fromtabl, tab2
where tabl.int_col = convert(int, tab2.float_col)

For example, if int_column is 4, and float_column is 4.2, the modified query
implicitly convertsto a4, and returns arow not returned by the original query.
The workaround can be salvaged by adding this self-join:

and tab2.float_col = convert(int, tab2.float_col)

Thisworkaround assumes that all valuesin tab2.float_col can be converted to
int without conversion errors.

Splitting stored procedures to improve costing

The optimizer cannot use statistics the final select in the following procedure,
because it cannot know the value of @city until execution time:

create procedure au_city_nanes
@ub_nane var char (30)
as
declare @ity varchar (25)
select @ity = city
from publishers where pub_nane = @ub_nane
sel ect au_l nane
from aut hors
where city = @ity

403

Basic units of costing

The following example shows the procedure split into two procedures. The
first procedure calls the second one:

create procedure au_nanes_proc
@ub_nane var char (30)
as
declare @ity varchar (25)
select @ity = city
from publishers
where pub_nane = @ub_nane
exec select_proc @ity
create procedure select_proc @ity varchar(25)
as
sel ect au_l nane
from aut hors
where city = @ity

When the second procedure executes, Adaptive Server knows the value of
@city and can optimize the select statement. Of course, if you modify thevalue
of @city in the second procedure before it is used in the select statement, the
optimizer may choose the wrong plan because it optimizes the query based on
the value of @city at the start of the procedure. If @city has different values
each time the second procedure is executed, leading to very different query
plans, you may want to use with recompile.

Basic units of costing

404

When the optimizer estimates costs for the query, the two factors it considers
arethecost of physical 1/0, reading pagesfrom disk, and the cost of logical 1/0,
finding pages in the data cache. The optimizer assigns 18 as the cost of a
physical 1/0 and 2 as the cost of alogical 1/0. These are relative units of cost
and do not represent time units such as milliseconds or clock ticks. These units
are used in the formulas in this chapter, with the physical 1/O costsfirst, then
thelogical 1/0 costs. The total cost of accessing atable can be expressed as:

Cost = All physical 10s * 18 + All logical I0s * 2

CHAPTER 18

Advanced Optimizing Tools

Thischapter describes query processing optionsthat affect the optimizer’s
choice of join order, index, 1/O size and cache strategy.

Topic Page
Special optimizing techniques 405
Specifying optimizer choices 406
Specifying table order in joins 407
Specifying the number of tables considered by the optimizer 409
Specifying an index for a query 410
Specifying I/O sizein a query 412
Specifying the cache strategy 415
Controlling large I/O and cache strategies 416
Enabling and disabling merge joins 417
Enabling and disabling join transitive closure 418
Suggesting a degree of parallelism for a query 419
Concurrency optimization for small tables 421

Special optimizing techniques

Being familiar with the information presented in the Basics volume helps
to understand the material in this chapter. Use caution, as the tools allow
you to override the decisions made by Adaptive Server’s optimizer and
can have an extreme negative effect on performance if misused. You
should understand the impact on the performance of both your individual
query and the possible implications for overall system performance.

Adaptive Server's advanced, cost-based optimizer produces excellent
query plansin most situations. But there are times when the optimizer
does not choose the proper index for optimal performance or chooses a
suboptimal join order, and you need to control the access methods for the
query. The options described in this chapter allow you that control.

405

Specifying optimizer choices

In addition, while you are tuning, you may want to see the effects of a
different join order, 1/O size, or cache strategy. Some of these options let
you specify query processing or access strategy without costly
reconfiguration.

Adaptive Server provides tools and query clauses that affect query
optimization and advanced query analysis tools that let you understand
why the optimizer makes the choices that it does.

Note This chapter suggests workarounds for certain optimization
problems. If you experience these types of problems, please call Sybase
Technical Support.

Specifying optimizer choices

406

Adaptive Server lets you specify these optimization choices by including
commands in a query batch or in the text of the query:

e Theorder of tablesin ajoin

e The number of tables evaluated at one time during join optimization
* Theindex used for atable access

* Thel/lOsize

e The cache strategy

e Thedegree of parallelism

In afew cases, the optimizer failsto choose the best plan. In some of these
cases, the plan it chooses is only dightly more expensive than the “ best”
plan, so you need to weigh the cost of maintaining forced options against
the slower performance of aless than optimal plan.

CHAPTER 18 Advanced Optimizing Tools

The commands to specify join order, index, 1/0 size, or cache strategy,
coupled with the query-reporting commandslike statistics io and showplan,
can help you determine why the optimizer makes its choices.

Warning! Use the options described in this chapter with caution. The
forced query plans may beinappropriate in some situations and may cause
very poor performance. If you include these optionsin your applications,
check query plans, 1/0 statistics, and other performance data regularly.

These options are generally intended for use astools for tuning and
experimentation, not as long-term solutions to optimization problems.

Specifying table order in joins

Adaptive Server optimizes join ordersto minimize I/O. In most cases, the
order that the optimizer chooses does not match the order of the from
clausesin your select command. To force Adaptive Server to accesstables
in the order they are listed, use:

set forceplan [on|off]

The optimizer still chooses the best access method for each table. If you
use forceplan, specifying ajoin order, the optimizer may use different
indexes on tables than it would with a different table order, or it may not
be able to use existing indexes.

You might use this command as a debugging aid if other query analysis
toolslead you to suspect that the optimizer is not choosing the best join
order. Alwaysverify that the order you areforcing reduces |/O and logical
reads by using set statistics io on and comparing 1/0O with and without
forceplan.

If you useforceplan, your routine performance maintenance checks should
include verifying that the queries and proceduresthat useit till requirethe
option to improve performance.

You can include forceplan in the text of stored procedures.

set forceplan forces only join order, and not join type. Thereisno
command for specifying the join type; you can disable merge joins at the
server or session level.

407

Specifying table order in joins

See “Enabling and disabling merge joins’ on page 417 for more
information.

Risks of using forceplan

Forcing join order has these risks:

Misuse can lead to extremely expensive queries. Always test the
query thoroughly with statistics io, and with and without forceplan.

It requires maintenance. You must regularly check queries and stored
procedures that include forceplan. Also, future versions of Adaptive
Server may eliminate the problems that lead you to incorporate index
forcing, so you should check all queriesusing forced query planseach
time anew version isinstalled.

Things to try before using forceplan
Before you use forceplan:

408

Check showplan output to determine whether index keys are used as
expected.

Use dbcc traceon(302) to ook for other optimization problems.
Run update statistics on the index.

Use update statistics to add statistics for search arguments on
unindexed search clauses in the query, especially for search
arguments that match minor keysin compound indexes.

If the query joins more than four tables, use set table count to seeif it
resultsin an improved join order.

See “ Specifying the number of tables considered by the optimizer”
on page 409.

CHAPTER 18 Advanced Optimizing Tools

Specifying the number of tables considered by the

optimizer

Adaptive Server optimizesjoins by considering permutations of two to
four tables at atime, as described in “ Costing and optimizing joins’ on
page 471. If you suspect that an inefficient join order is being chosen for
ajoin query, you can use the set table count option to increase the number
of tables that are considered at the same time. The syntax is:

set table count int_value
Valid values are 0 though 8; 0 restores the default behavior.
For example, to specify 4-at-a-time optimization, use:

set table count 4

dbcc traceon(310) reports the number of tables considered at atime. See
“dbcc traceon(310) and final query plan costs’ on page 891 for more
information.

As you decrease the value, you reduce the chance that the optimizer will
consider al the possible join orders. Increasing the number of tables
considered at one time during join ordering can greatly increase the time
it takesto optimize a query.

Since the time it takes to optimize the query isincreased with each
additional table, the set table count option is most useful when the
execution savings from improved join order outweighs the extra
optimizing time. Some examples are;

e If youthink that amore optimal join order can shorten total query
optimization and execution time, especially for stored proceduresthat
you expect to be executed many times once aplan isin the procedure
cache

¢ When saving abstract plans for later use

Usesstatistics time to check parse and compile time and statistics io to verify
that the improved join order is reducing physical and logical 1/0.

If increasing the table count produces an improvement in join
optimization, but increases the CPU time unacceptably, rewrite the from
clause in the query, specifying the tables in the join order indicated by
showplan output, and use forceplan to run the query. Your routine
performance maintenance checks should include verifying that the join
order you are forcing still improves performance.

409

Specifying an index for a query

Specifying an index for a query

You can specify the index to use for aquery using the (index index_name)
clausein select, update, and delete statements. You can also force aquery
to perform atable scan by specifying the table name. The syntax is:

select select_list
from table_name [correlation_name]
(index {index_name | table_name })
[, table_name ...]
where ...

delete table_name
from table_name [correlation_name]
(index {index_name | table_name}) ...

update table_name set col_name = value
from table_name [correlation_name]
(index {index_name | table_name})...

For example:

sel ect pub_nane, title
frompublishers p, titles t (index date_type)
where p.pub_id = t.pub_id
and type = "busi ness"
and pubdate > "1/1/93"

Specifying an index in a query can be helpful when you suspect that the
optimizer is choosing a suboptimal query plan. When you use this option:

« Always check statistics io for the query to see whether the index you
choose requires less 1/0 than the optimizer’s choice.

e Ttest afull range of valid values for the query clauses, especialy if
you are tuning queries:

e Tuning queries on tables that have skewed data distribution

« Performing range queries, since the access methods for these
gueries are sensitive to the size of the range

CHAPTER 18 Advanced Optimizing Tools

Use this option only after testing to be certain that the query performs
better with the specified index option. Once you include an index
specification in a query, you should check regularly to be sure that the
resulting plan is still better than other choices made by the optimizer.

Note If anonclustered index has the same name asthetable, specifying a
table name causes the nonclustered index to be used. You canforce atable
scan using select select_list from tablename (0).

Risks

Specifying indexes has these risks:

Changes in the distribution of data could make the forced index less
efficient than other choices.

Dropping theindex meansthat all queriesand proceduresthat specify
the index print an informational message indicating that the index
does not exist. The query is optimized using the best alternative
access method.

Maintenance increases, since all queries using this option need to be
checked periodically. Also, future versions of Adaptive Server may
eliminate the problems that lead you to incorporate index forcing, so
you should check all queries using forced indexes each time you
install anew version.

Things to try before specifying an index
Before specifying an index in queries:

Check showplan output for the “Keysare” message to be sure that the
index keys are being used as expected.

Use dbcc traceon(302) to look for other optimization problems.

Run update statistics on the index.

411

Specifying I/O size in a query

e |If theindex isacompoasite index, run update statistics on the minor
keysin theindex, if they are used as search arguments. This can
greatly improve optimizer cost estimates. Creating statisticsfor other
columns frequently used for search clauses can also improve
estimates.

Specifying 1/0O size in a query

412

If your Adaptive Server is configured for large 1/0s in the default data
cache or in named data caches, the optimizer can decide to use large 1/0
for:

¢ Queriesthat scan entire tables

* Range queriesusing clustered indexes, such asqueriesusing >, <, > x
and <y, between, and like “charstring %”

e Queriesthat scan alarge number of index leaf pages

If the cache used by the table or index is configured for 16K 1/0, asingle
1/O can read up to eight pages simultaneously. Each named data cache can
have several pools, each with adifferent I/O size. Specifying the 1/O size
in aquery causesthe 1/O for that query to take place in the pool that is
configured for that size. See the System Administration Guide for
information on configuring named data caches.

To specify an 1/O size that is different from the one chosen by the
optimizer, add the prefetch specification to the index clause of aselect,
delete, or update statement. The syntax is:

select select_list
from table_name
([index {index_name | table_name}]
prefetch size)
[, table_name ...]
where ...

delete table_name from table_name
([index {index_name | table_name}]
prefetch size)

CHAPTER 18 Advanced Optimizing Tools

update table_name set col_name = value
from table_name
([index {index_name | table_name}]
prefetch size)

Valid valuesfor size are 2, 4, 8, and 16. If no pool of the specified size
existsin the data cache used by the object, the optimizer chooses the best
avalable size.

If there is a clustered index on au_Iname, this query performs 16K 1/O
while it scans the data pages:

sel ect *
fromauthors (index au_nanes prefetch 16)
where au_l nane |ike "Snt4

If aquery normally performslarge I/O, and you want to check its1/O
performance with 2K 1/O, you can specify asize of 2K:

sel ect type, avg(price)
fromtitles (index type_price prefetch 2)
group by type

Index type and large 1/O

When you specify an /O size with prefetch, the specification can affect
both the data pages and the |eaf-level index pages. Table 18-1 showsthe

effects.
Table 18-1: Access methods and prefetching
Access method Large I/O performed on
Table scan Data pages
Clustered index Data pages only, for alpages-locked
tables

Datapagesand leaf-level index pagesfor
data-only-locked tables

Nonclustered index Data pages and leaf pages of
nonclustered index

showplan reports the 1/0 size used for both data and leaf-level pages.
See “1/0O Size Messages’ on page 812 for more information.

413

Specifying I/O size in a query

When prefetch specification is not followed

In most cases, when you specify an I/O sizein aquery, the optimizer
incorporates the 1/0 size into the query’s plan. However, there are times
when the specification cannot be followed, either for the query asawhole
or for asingle, large I/O request.

Large I/0O cannot be used for the query if:

e Thecacheisnot configured for 1/O of the specified size. The
optimizer substitutes the best size available.

e sp_cachestrategy has been used to disable large I/O for the table or
index.

Large I/0O cannot be used for a single buffer if

« Any of the pagesincluded in that I/O request arein another pool inthe
cache.

e Thepageisonthefirst extent in an alocation unit. This extent holds
the allocation page for the alocation unit, and only seven data pages.

* No buffersare available in the pool for the requested I/O size.

Whenever alarge 1/0 cannot be performed, Adaptive Server performs 2K
1/0 on the specific page or pagesin the extent that are needed by the query.

To determine whether the prefetch specification isfollowed, use showplan
to display the query plan and statistics io to see the results on I/O for the
query. sp_sysmon reports on the large 1/Os requested and denied for each
cache.

See “Data cache management” on page 973.

set prefetch on

By default, aquery useslarge 1/O whenever alarge 1/0 pool is configured
and the optimizer determines that large 1/0 would reduce the query cost.
To disable large I/O during a session, use:

set prefetch off
To reenable large I/O, use:
set prefetch on

If large I/O isturned off for an object using sp_cachestrategy, set prefetch
on does not override that setting.

414

CHAPTER 18 Advanced Optimizing Tools

If large 1/O is turned off for a session using set prefetch off, you cannot
override the setting by specifying aprefetch size aspart of aselect, delete,
or insert statement.

The set prefetch command takes effect in the samebatch in whichitisrun,
so you can include it in a stored procedure to affect the execution of the
queriesin the procedure.

Specifying the cache strategy

For queriesthat scan atable’'s datapages or the leaf level of anonclustered
index (covered queries), the Adaptive Server optimizer chooses one of two
cachereplacement strategies:. the fetch-and-discard (MRU) strategy or the
LRU strategy.

See “Overview of cache strategies’ on page 162 for more information
about these strategies.

The optimizer may choose the fetch-and-discard (MRU) strategy for:
* Any query that performs table scans

» Arange query that uses a clustered index

* A covered query that scans the leaf level of a nonclustered index

* Aninnertableinanested-loopjoin, if theinner tableislarger than the
cache

» The outer table of a nested-loop join, since it needs to be read only
once

» Bothtablesin amergejoin

You can affect the cache strategy for objects:

» By specifying Iru or mru in aselect, update, or delete Statement
» By using sp_cachestrategy to disable or reenable mru strategy

If you specify MRU strategy, and a page is already in the data cache, the
pageisplaced at the MRU end of the cache, rather than at the wash marker.

Specifying the cache strategy affects only data pages and the leaf pages of
indexes. Root and intermediate pages always use the LRU strategy.

415

Controlling large 1/0 and cache strategies

In select, delete, and update statements

You can use Iru or mru (fetch-and-discard) in a select, delete, or update
command to specify the 1/O size for the query:

select select_list
from table_name
(index index_name prefetch size [Iru|mru])
[, table_name ...]
where ...

delete table_name from table_name (index index_name
prefetch size [Irujmru]) ...

update table_name set col_name = value
from table_name (index index_name
prefetch size [Irujmru]) ...

This query adds the LRU replacement strategy to the 16K 1/0O
specification:

sel ect au_l nane, au_fnanme, phone
from authors (index au_names prefetch 16 [ru)

For moreinformation about specifying aprefetch size, see* Specifying 1/0
sizeinaquery” on page 412.

Controlling large 1/0 and cache strategies

Status bitsin the sysindexes table identify whether atable or an index
should be considered for large I/O prefetch or for MRU replacement
strategy. By default, both are enabled. To disable or reenable these
strategies, use sp_cachestrategy. The syntax is:
sp_cachestrategy dbname , [ownername.]tablename

[, indexname | "text only" | "table only"

[, { prefetch | mru }, { "on" | "off"}]]
This command turns off the large 1/0 prefetch strategy for the
au_name_index of the authors table:

sp_cachestrat egy pubtune,
aut hors, au_name_index, prefetch, "off"

This command reenables MRU replacement strategy for the titles table:

416

CHAPTER 18 Advanced Optimizing Tools

sp_cachestrat egy pubtune,
titles, "table only", nru, "on"

Only a System Administrator or the object owner can change or view the
cache strategy status of an object.

Getting information on cache strategies

To see the cache strategy that isin effect for a given object, execute
sp_cachestrategy, with the database and object name;

sp_cachestrategy pubtune, titles
obj ect nane i ndex name large 10 MRU

titles NULL ON ON

showplan output shows the cache strategy used for each object, including
worktables.

Enabling and disabling merge joins

By default, merge joins are not enabled at the server level. When merge
joinsare disabled, the server only costs nested-loop joins, and mergejoins
are not considered. To enable merge joins server-wide, set enable sort-
merge joins and JTC to 1. This aso enablesjoin transitive closure.

The command set sort_merge on overrides the server level to allow use of
merge joins in a session or stored procedure.

To enable mergejoins, use:
set sort_merge on
To disable merge joins, use:
set sort_nerge off

For information on configuring merge joins server-wide see the System
Administration Guide.

417

Enabling and disabling join transitive closure

Enabling and disabling join transitive closure

418

By default, join transitive closure is not enabled at the server level, since
it can increase optimization time. You can enablejoin transitive closure at
asession level with set jic on. The session-level command overrides the
server-level setting for the enable sort-merge joins and JTC configuration
parameter.

For queries that execute quickly, even when several tables are involved,
join transitive closure may increase optimization time with little
improvement in execution cost. For example, with join transitive closure
applied to this query, the number of possible joinsis multiplied for each
added table:

select * fromtl, t2, t3, t4, ... tN
where tl1l.cl =t2.cl

and t1.c1l =1t3.cl

and t1.cl td4.cl

and t1.cl

tN. cl

For joins on very large tables, however, the additional optimization time
involved in costing the join orders added by join transitive closure may
result in ajoin order that greatly improves the response time.

You can use set statistics time to see how long it takes to optimize the
query. If running queries with set jtc on greatly increases optimization
time, but also improves query execution by choosing a better join order,
check the showplan or dbcc traceon(302, 310) output. Explicitly add the
useful join orders to the query text. You can run the query without join
transitive closure, and get the improved execution time, without the
increased optimization time of examining al possiblejoin orders
generated by join transitive closure.

You can also enable join transitive closure and save abstract plans for
queries that benefit. If you then execute those queries with loading from
the saved plans enabled, the saved execution plan is used to optimize the
query, making optimization time extremely short.

See Chapter 28, “Introduction to Abstract Plans,” for moreinformation on
using abstract plans.

For information on configuring join transitive closure server-wide see the
System Administration Guide.

CHAPTER 18 Advanced Optimizing Tools

Suggesting a degree of parallelism for a query

The parallel and degree_of _parallelism extensions to the from clause of a
select command allow users to restrict the number of worker processes
used in a scan.

For a parallel partition scan to be performed, the degree_of parallelism
must be equal to or greater than the number of partitions. For a parallel
index scan, specify any value for the degree_of parallelism.

The syntax for the select statement is:

select...
[from {tablename}

[(index index_name
[parallel [degree_of parallelism | 1]]
[prefetch size] [Irujmru])],

{tablename} [([index_name]
[parallel [degree_of parallelism | 1]

[prefetch size] [Iru|mru])] ...

Table 18-2 shows how to combine the index and parallel keywords to
obtain serial or parallel scans.

Table 18-2: Optimizer hints for serial and parallel execution

To specify this type of scan: Use this syntax:

Parallel partition scan (index tablename parallel N)
Parallel index scan (index index_name parallel N)
Serial table scan (index tablename parallel 1)
Serial index scan (index index_name parallel 1)

Parallel, with the choice of tableor (parallel N)
index scan left to the optimizer

Serial, with the choice of table or (parallel 1)
index scan left to the optimizer

When you specify the parallel degreefor atablein amergejoin, it affects
the degree of parallelism used for both the scan of the table and the merge
join.

You cannot use the parallel option if you have disabled parallel processing
either at the session level with the set parallel_degree 1 command or at the

server level with the parallel degree configuration parameter. The parallel
option cannot override these settings.

If you specify adegree of parallelismthat is greater than the maximum
configured degree of parallelism, Adaptive Server ignores the hint.

419

Suggesting a degree of parallelism for a query

The optimizer ignores hints that specify a parallel degreeif any of the
following conditionsis true:

e Thefrom clauseis used in the definition of a cursor.

e parallel isused in the from clause of an inner query block of a
subquery, and the optimizer does not move the table to the outermost
query block during subquery flattening.

« Thetableisaview, asystem table, or avirtua table.
e Thetableistheinner table of an outer join.
e The query specifies exists, min, or max on the table.

e Thevaluefor the max scan parallel degree configuration parameter is
setto 1.

e Anunpartitioned clustered index is specified or isthe only parallel
option.

e A nonclustered index is covered.
e Thequery is processed using the OR strategy.

For an explanation of the OR strategy, see “ Access Methods and
Costing for or and in Clauses” on page 451.

e The select statement is used for an update or insert.

Query level parallel clause examples

420

To specify thedegree of parallelism for asinglequery, include parallel after
the table name. This example executes in serial:

select * fromtitles (parallel 1)

This example specifies the index to be used in the query, and setsthe
degree of parallelismto 5:

select * fromtitles
(index title_id_clix parallel 5)
where ...

To force atable scan, use the table name instead of the index name.

CHAPTER 18 Advanced Optimizing Tools

Concurrency optimization for small tables

For data-only-locked tables of 15 pagesor fewer, Adaptive Server doesnot
consider atable scan if there is a useful index on the table. Instead, it
always chooses the cheapest index that matches any search argument that
can be optimized in the query. The locking required for an index scan
provides higher concurrency and reduces the chance of deadlocks,
although dightly more 1/0O may be required than for atable scan.

If concurrency on small tablesis not an issue, and you want to optimize
the 1/O instead, you can disable this optimization with sp_chgattribute.
This command turns off concurrency optimization for atable:

sp_chgattribute tiny_|l ookup_table,
"concurrency_opt _threshold", 0

With concurrency optimization disabled, the optimizer can choose table
scans when they require fewer 1/Os.

You can also increase the concurrency optimization threshold for atable.
This command sets the concurrency optimization threshold for atable to
30 pages:

sp_chgattribute | ookup_tabl e,
"concurrency_opt _t hreshol d", 30

The maximum value for the concurrency optimization threshold is32,767.
Setting thevalueto -1 enforces concurrency optimization for atable of any
size. It may be useful in cases where atable scan is chosen over indexed
access, and the resulting locking results in increased contention or

deadl ocks.

The current setting is stored in systabstats.conopt_thld and is printed as
part of optdiag output.

Changing locking scheme

Concurrency optimization affects only data-only-locked tables. Table 18-
3 shows the effect of changing the locking scheme.

Table 18-3: Effects of alter table on concurrency optimization

settings

Changing locking scheme from Effect on stored value
Allpages to data-only Set to 15, the default
Data-only to allpages Setto 0

421

Concurrency optimization for small tables

Changing locking scheme from Effect on stored value

One data-only scheme to another Configured value retained

422

CHAPTER 19

Overview

Query Tuning Tools

This chapter provides a guide to the tools that can help you tune your

queries.
Topic Page
Overview 423
How tools may interact 425
How tools relate to query processing 426

The tools mentioned in this chapter are described in more detail in the
chapters that follow.

Adaptive Server provides the following diagnostic and informational
toolsto help you understand query optimization and improve the
performance of your queries:

A choice of toolsto check or estimate the size of tables and indexes.
These tools are described in Chapter 15, “ Determining Sizes of
Tables and Indexes.”

set statistics io on displays the number of logical and physical reads
and writes required for each tablein a query. If resource limits are
enabled, it also displays the total actual 1/0 cost. set statistics io iS
described in Chapter 34, “Using the set statistics Commands.”

set showplan on displays the steps performed for each query ina
batch. It is often used with set noexec on, especialy for queries that
return large numbers of rows.

See Chapter 35, “Using set showplan.”

set statistics subquerycache on displays the number of cache hits and
misses and the number of rows in the cache for each subquery.

See “Subquery results caching” on page 502 for examples.

423

Overview

424

set statistics time on displays the time it takes to parse and compile
each command.

See “Checking compile and execute time” on page 762 for more
information.

dbcc traceon (302) and dbcc traceon(310) provide additional
information about why particular plans were chosen and is often used
when the optimizer chooses a plan that seems incorrect.

See Chapter 37, “Tuning with dbcc traceon.”

The optdiag utility command displays statistics for tables, indexes,
and columns.

See Chapter 36, “ Statistics Tables and Displaying Statistics with
optdiag.”

Chapter 18, “Advanced Optimizing Tools,” explains tools you can

use to enforce index choice, join order, and other query optimization
choices. These tools include:

e set forceplan —forces the query to use the tables in the order
specified in the from clause.

e settable count —increasesthe number of tablesthat the optimizer
considers at one time while determining join order.

* select, delete, update clauses with
(index...prefetch...mru_lru...parallel) —specifiestheindex, 1/0 size,
or cache strategy to use for the query.

e set prefetch —toggles prefetch for query tuning experimentation.
e setsort_merge — disallows sort-merge joins.

e set parallel_degree — specifies the degree of parallelism for a
query.

e sp_cachestrategy — Sets status bits to enable or disable prefetch
and fetch-and-discard cache strategies.

CHAPTER 19 Query Tuning Tools

How tools may interact

showplan, statistics io, and other commands produce their output while
stored procedures arebeing run. The system proceduresthat you might use
for checking table structure or indexes as you test optimization strategies
can produce voluminous output when diagnostic information is being
printed. You may want to have hard copies of your table schemas and
index information, or you can use separate windows for running system
procedures such as sp_helpindex.

For lengthy queries and batches, you may want the save showplan and
statistics io output in files. You can do so by using “echo input” flag to isgl.
The syntax is:

isql -P password -e -i input_file -o outputfile

Using showplan and noexec together

showplan is often used in conjunction with set noexec on, which prevents
SQL statements from being executed. |ssue showplan, or any other set
commands, before you issue the noexec command. Once you issue set
noexec on, the only command that Adaptive Server executesisset noexec
off. This example shows the correct order:

set showpl an on
set noexec on
go
sel ect au_l nane, au_fname
from authors
where au_id = "Al137406537"
go

noexec and statistics io

While showplan and noexec make useful companions, noexec stopsall the
output of statistics io. The statistics io command reports actual disk 1/0;
while noexec isin effect, no 1/O takes place, so the reports are not printed.

425

How tools relate to query processing

How tools relate to query processing

426

Many of the tools, for example, the set commands, affect the decisions
made by the optimizer. showplan and dbcc traceon(302, 310) show you
optimizer decision-making. dbcc traceon(302,310) shows intermediate
information as analysis is performed, with dbcc traceon(310) printing the
final plan statistics. showplan shows the final decision on access methods
and join order.

statistics io and statistics time provideinformation about how the query was
executed: statistics time measures time from the parse step until the query
completes. statistics io printsactual 1/0 performed during query execution.

noexec alows you to obtain information such as showplan or dbcc
traceon(302,310) output without actually executing the query.

CHAPTER 20

Access Methods and Query
Costing for Single Tables

This chapter introduces the methods that Adaptive Server uses to access
rows in tables. It examines various types of queries on single tables, and
describes the access methods that can be used, and the associated costs.

Topic Page
Table scan cost 429
From rows to pages 432
Evaluating the cost of index access 435
Costing for queries using order by 443
Access Methods and Costing for or and in Clauses 451
How aggregates are optimized 456
How update operations are performed 458

Chapter 17, “ Adaptive Server Optimizer,” explains how the optimizer
uses search argumentsand j oin clausesto estimate the number of rowsthat
aquery will return. This chapter looks at how the optimizer uses row
estimates and other statistics to estimate the number of pages that must be
read for the query, and how many logical and physical 1/Os are required.

This chapter looks at queries that affect asingle table.

For queries that involve more than one table, see Chapter 21, “ Accessing
Methods and Costing for Joins and Subqueries.”

For parallel queries, see Chapter 23, “Parallel Query Optimization.”

Thischapter containsinformation about query processing that you can use
in several ways asit:

» Providesageneral overview of the access methods that Adaptive
Server usesto processavariety of queries, including illustrations and
sample queries. Thisinformation will help you understand how
particular types of queries are executed and how you can improve
query performance by adding indexes or statistics for columns used
in the queries.

427

428

» Providesadescription of how the optimizer arrives at the logical and
physical 1/0 estimates for the queries. These descriptions can help
you understand whether the I/O use and response time are reasonable
for agiven query. These descriptions can be used with the following
tuning tools:

e optdiag can be used to display the statistics about your tables,
indexes, and column values.

See Chapter 36, “ Statistics Tables and Displaying Statisticswith
optdiag.”

« showplan displaysthe accessmethod (table scan, index scan, type
of OR strategy, and so forth) for aquery.

See Chapter 35, “Using set showplan.”

e statistics io displaysthelogical and physical I/O for each tablein
aquery.

« Providesdetailed formulas, very close to the actual formulas used by
Adaptive Server. Use these formulas are meant to be used in
conjunction with the tuning tools:

e optdiag can be used to display the statistics that you need to apply
the formulas. See Chapter 36, “ Statistics Tables and Displaying
Statistics with optdiag.”

« dbcc traceon(302) displays the sizes, densities, selectivities and
cluster ratios used to produce logical 1/0 estimates, and dbcc
traceon(310) displays the final query costing for each table,
including the estimated physical 1/0. See Chapter 37, “Tuning
with dbcc traceon.”

In many cases, you will need to use these formulas only when you are
debugging problem queries. You may need to discover why an or
query performs atable scan, or why an index that you thought was
useful is not being used by a query.

This chapter can also hel p you determine when to stop working to improve
the performance of a particular query. If you know that it needsto read a
certain number of index pages and data pages, and the number of 1/Os
cannot be reduced further by adding a covering index, you know that you
have reached the optimum performance possible for query analysis and
index selection. You might need to look at other issues, such as cache
configuration, parallel query options, or object placement.

CHAPTER 20 Access Methods and Query Costing for Single Tables

Table scan cost

When a query requires a table scan, Adaptive Server reads each page of
the table from disk into the data cache and checks the data values (if there
isawhere clause) and returns qualifying rows.

Table scans are performed:
* When no index exists on the columns used in the search clauses.

* Whentheoptimizer determinesthat using theindex ismore expensive
than performing a table scan. The optimizer may determinethat it is
cheaper to read the data pages directly than to read the index pages
and then the data pages for each row that isto be returned.

The cost of atable scan depends on the size of the table and the 1/0 size.

Cost of a scan on allpages-locked table

The /O cost of atable scan on an alpages-locked table using 2K 1/0O is
one physical 1/0 and one logical 1/O for each page in the table:

Table scan cost = Number of pages * 18
+ Number of pages * 2

If the table uses a cache with large 1/0, the number of physical I/Osis
estimated by dividing the number of pages by the 1/O size and using a
factor that isbased on the data page cluster ratio to estimate the number of
large 1/Os that need to be performed. Since large 1/O cannot be performed
on any data pages on the first extent in the allocation unit, each of those
pages must be read with 2K 1/0.

Thelogical 1/0 cost isonelogica 1/0 for each page in the table. The
formulais:

Table scan cost = (pages /pages per 10) * Clustering adjust-
ment* 18+ Number of pages * 2

429

Table scan cost

See “How cluster ratios affect large I/0 estimates’ on page 433 for more
information on cluster ratios.

Note Adaptive Server does not track the number of pagesin the first
extent of an allocation unit for an allpages-locked table, so the optimizer
does not include this dlight additional 1/0 in its estimates.

Cost of a scan on a data-only-locked tables

430

Tables that use data-only locking do not have page chains like allpages-
locked tables. To perform atable scan on a data-only-locked table,
Adaptive Server:

* Readsthe OAM (object allocation map) page(s) for the table
» Usesthe pointers on the OAM page to access the allocation pages

» Usesthepointerson the all ocation pagesto | ocate the extents used by
the table

» Performseither large I/O or 2K /O on the pages in the extent

Thetotal cost of atable scan on a data-only-locked table includes the
logical and physical I/O for all pagesin the table, plus the cost of logical
and physical 1/0 for the OAM and allocation pages.

Figure 20-1 shows the pointers from OAM pagesto allocation pages and
from allocation pages to extents.

CHAPTER 20 Access Methods and Query Costing for Single Tables

OAM Page

0

256

Figure 20-1: Sequence of pointers for OAM scans

112132567 Pa_gesusedby
object

Allocation page

16

17118 |19120| 21|22 |23

24

Other pages

25126 (2728|2930 31

248

249|250 |251|252|253|254 |255

256

257|258|259(260(261|262 (263

264

265|266|267(268(269|270(271

272

273|274|275|276|277|278|279

280

281|282 (283|284 (285|286 (287

504

505|506 (507|508|509|510|511

The formula for computing the cost of an OAM scan with 2K 1/O is:

OAM Scan Cost = (OAM _alloc_pages + Num_pages) * 18
+ (OAM_alloc_pages + Num_pages)* 2

When large 1/O can be used, the optimizer adds the cost of performing 2K
1/O for the pagesin the first extent of each allocation unit to the cost of
performing 16K 1/O on the pagesin regular extents. The number of
physical 1/0sis the number of pagesin the table, modified by a cluster
adjustment that is based on the data page cluster ratio for the table.

See “How cluster ratios affect large I/O estimates’ on page 433 for more
information on cluster ratios.

431

From rows to pages

Logical 1/0 costsare onel/O per pagein thetable, plusthelogical 1/0 cost
of reading the OAM and allocation pages. The formulafor computing the
cost of an OAM scan with large I/O is:

OAM Scan Cost = OAM_alloc_pages * 18
+ Pages in 1st extent * 18
+ Pages in other extents / Pages per 10
* Cluster adjustment * 18
+ OAM_alloc_pages * 2
+ Pages in table * 2

optdiag reports the number of pages for each of the needed values.

When a data-only-locked table contains forwarded rows, the 1/0 cost of
reading the forwarded rows is added to the logical and physical 1/0 for a
table scan.

See “Allpages-locked heap tables’ on page 156 for more information on
row forwarding.

From rows to pages

432

When the optimizer costs the use of an index to resolve a query, it first
estimates the number of qualifying rows, and then estimates the number of
pages that need to be read.

The examplesin Chapter 17, “ Adaptive Server Optimizer,” show how
Adaptive Server estimates the number of rows for a search argument or
join using statistics. Once the number of rows has been estimated, the
optimizer estimates the number of data pages and index leaf pages that
need to be read:

« For tables, the optimizer divides the number of rows in the table by
the number of pagesto determinethe average number of rows per data

page.
« To estimate the average number of rows per page on the leaf level of

an index, the optimizer divides the number of rowsin the table by the
number of leaf pagesin theindex.

CHAPTER 20 Access Methods and Query Costing for Single Tables

After the number of pagesis estimated, data page and index page cluster
ratios are used to adjust the page estimates for queriesusing large 1/O, and
data row cluster ratios are used to estimate the number of data pages for
gueries using noncovering indexes.

How cluster ratios affect large 1/0O estimates

Data page cluster ratio

When clusteringishigh, largel/O iseffective. Asthe cluster ratiosdecline,
effectiveness of large I/O drops rapidly. To refine 1/O estimates, the
optimizer uses a set of cluster ratios:

» For atable, the data page cluster ratio measures the packing and
seguencing of pages on extents.

» For anindex, the data page cluster ratio measures the effectiveness of
large I/O for accessing the table using this index.

» Theindex page cluster ratio measures the packing and sequencing of
leaf-level index pages on index extents.

Note The datarow cluster ratio, another cluster ratio used by query
optimization, is used to cost the number of data pages that need to be
accessed during scans using a particular index. It isnot used in large
1/O costing.

optdiag displays the cluster ratios for tables and indexes.

The data page cluster ratio for atable measures the effectiveness of large
I/O for table scans. Its useis slightly different depending on the locking
scheme.

433

From rows to pages

On allpages-locked tables

For allpages-locked tables, atable scan or a scan that uses a clustered
index to scan many pages follows the next-page pointers on each data
page. Immediately after the clustered index is created, the data page
cluster ratio is 1.0, and pages are ordered by page number on the extents.
However, after updates and page splits, the page chain can be fragmented
across the page chain, as shown in Figure 20-2, where page 10 has been
split; the page pointers point from page 10 to page 26 in another extent,
then to page 11.

Figure 20-2: Page chain crossing extents in an allpages-locked
table

213|456 F Pages used by object

OAM page

16

17

w0l [13] 14| 15 .

1819|120 |21 |22 |23

24

25

—— Allocation page
2627|2829 30|31

Other pages

248

249

250(251(252|253|254|255

On data-only-locked tables

434

The data page cluster ratio for an allpages-locked table measures the
effectiveness of large I/O for both table scans and clustered index scans.

For data-only-locked tables, the data page cluster ratio measures how well
the pages are packed on the extents. A cluster ratio of 1.0 indicates
complete packing of extents, with the page chain ordered. If extents
contain unused pages, the data page cluster ratio is less than 1.0.

optdiag reports two data page cluster ratios for data-only-locked tables
with clustered indexes. The value reported for the table is used for table
scans. The value reported for the clustered index is used for scans using
the index.

CHAPTER 20 Access Methods and Query Costing for Single Tables

Index page cluster ratio

Theindex page cluster ratio measuresthe packing and sequencing of index
leaf pages on extents for nonclustered indexes and clustered indexes on
data-only-locked tables. For queries that need to read more than one | eaf
page, the leaf level of the index is scanned using next-page or previous-
page pointers. If many leaf rows need to be read, 16K 1/0O can be used on
the leaf pagesto read one extent at atime. The index page cluster ratio
measures fragmentation of the page chain for the leaf level of the index.

Evaluating the cost of index access

When a query has search arguments on useful indexes, the query accesses
only the index pages and data pages that contain rows that match the
search arguments. Adaptive Server compares the total cost of index and
data page /O to the cost of performing atable scan, and uses the cheapest
method.

Query that returns a single row

A query that returns asingle row using an index performsone |/O for each
index level plus one read for the data page. The optimizer estimates the
total cost as one physical 1/0 and onelogical 1/0 for each index page and
the data page. The cost for a point query is.

Point query cost = (Number of index levels + data page) * 18
+ (Number of index levels + data page) * 2

optdiag output displays the number of index levels.

Theroot page and intermediate pages of frequently used indexes are often
found in cache. In that case, actual physical I/O is reduced by one or two
reads.

Query that returns many rows

A query that returns many rows may be optimized very differently,
depending on the type of index and the number of rows to be returned.
Some examples are:

435

Evaluating the cost of index access

e Queries with search arguments that match many values, such as:

select title, price
fromtitles
where pub_id = "P099"

* Range queries, such as:

select title, price
fromtitles
where price between $20 and $50

For queriesthat return alarge number of rows using the leading key of the
index, clustered indexes and covering nonclustered indexes are very
efficient:

« |f thetable uses allpages |ocking, and has a clustered index on the
search arguments, the index is used to position the scan on the first
qualifying row. The remaining qualifying rows are read by scanning
forward on the data pages.

e If anonclustered index or the clustered index on a data-only-locked
table coversthe query, theindex is used to position the scan at the first
qualifying row on the index leaf page, and the remaining qualifying
rows are read by scanning forward on the leaf pages of the index.

If the index does not cover the query, using a clustered index on a data-
only-locked table or anonclustered index requires accessing the data page
for each index row that matches the search arguments on the index. The
matching rows may be scattered across many data pages, or they could be
located on avery small number of pages, particularly if theindex isa
clustered index on a data-only-locked table. The optimizer uses data row
cluster ratios to estimate how many physical and logical 1/Os are required
toread al of the qualifying data pages.

Range queries using clustered indexes (allpages locking)

436

To estimate the number of physical 1/0s required for arange query using
aclustered index on an allpages-locked table, the optimizer adds the
physical and logical 1/O for each index level and the physical and logical
1/O of reading the needed data pages. Since data pages are read in order
following the page chain, the cluster adjustment helps estimate the
effectiveness of large I/0. The formulais:

Data pages = Number of qualified rows / Data rows per page

CHAPTER 20 Access Methods and Query Costing for Single Tables

Range query cost = Number of index levels * 18
+ Data pages/pages per 10 * Cluster adjustment * 18
+ Number of index levels * 2
+ Data pages * 2

If aquery returns 500 rows, and the table has 10 rows per page, the query
needs to read 50 data pages, plus one index page for each index level. If
the query uses 2K 1/0Q, it requires 50 1/Os for the data pages. If the query
uses 16K 1/0, these 50 data pages require 7 1/Os.

The cluster adjustment uses the data page cluster ratio to refine the
estimate of large I/O for the table, based on how fragmented the data page
storage has become on the table's extents.

Figure 20-3 showshow arange query using aclustered index positionsthe
search on the first matching row on the data pages. The next-page pointers
are used to scan forward on the data pages until a nonmatching row is
encountered.

437

Evaluating the cost of index access

Figure 20-3: Range query on the clustered index of an

allpages-locked table

select fname, Iname, id

from employees

where Iname between "Greaves"
and "Highland"

Clustered index on Iname

Key Pointer

Page 1132
Bennet
Chan
Dull
Edwards

Page 1007
Bennet 1132
Greane 1133

Key Pointer Green 1144
page 1001 Hunter 1127

Page 1133
Greane
Greaves
Greco

Bennet 1007 Page 1009
Karsen 1009 Karsen 1009
Smith 1062

Root page Intermediate

Range queries with covering indexes

Page 1144
Green
Greene
Highland
Hopper

Page 1127
Hunter
Jenkins

Data pages

Range queries using covering indexes perform very well because:

» Theindex isused to position the search at the first qualifying row on

the index leaf level.

» Eachindex page contains more rowsthan corresponding datarows, so

fewer pages need to be read.

438

CHAPTER 20 Access Methods and Query Costing for Single Tables

¢ Index pagestend to remain in cache longer than data pages, so fewer
physical 1/0Os are needed.

e If thecache used by theindex is configured for large 1/0, up to 8 leaf-
level pages can be read per |/0.

¢ The data pages do not have to be accessed.

Both nonclustered indexes and clustered indexes on data-only-locked
tables have aleaf level above the datalevel, so they can provide index
covering.

The cost of using a covering index is determined by:

e The number of non-leaf index levels

¢ The number of rows that the query returns

e The number of rows per page on the leaf level of the index
e The number of leaf pagesread per 1/0

¢ Theindex page cluster ratio, used to adjust large 1/0 estimates when
the index pages are not stored consecutively on the extents

This formula shows the costs:

Leaf pages = Number of qualified rows / Leaf level rows per page

Covered scan cost =Number of index levels * 18
+(Leaf pages /Pages per |0) * Cluster adjustment * 18
+Number of index levels * 2
+Leaf pages * 2

For example, if aquery needsto read 1,200 leaf pages, and there are 40
rows per leaf-level page, the query needs to read 30 leaf-level pages. If
large I/0 can be used, thisrequires 4 1/Os. If inserts have caused page
splits on the index |eaf-level, the cluster adjustment increases the
estimated number of large 1/Os.

Range queries with noncovering indexes

When a nonclustered index or a clustered index on adata-only-locked
table does not cover the query, Adaptive Server:

e Usestheindex to locatethefirst qualifying row at theleaf level of the
nonclustered index

439

Evaluating the cost of index access

440

» Followsthe pointer to the data page for that index, and reads the page

« Findsthe next row on the index page, and locates its data page, and
continues this process until all matching keys have been used

For each subsequent key, the data row could be on the same page as the
row for the previous key, or the datarow may be on adifferent pagein the
table. The clustering of key values for each index is measured by avalue
called the data row cluster ratio. The datarow cluster ratio is applied to
estimate the number of logical and physical 1/Os.

When the datarow cluster ratiois 1.0, clustering isvery high. High cluster
ratios are always seen immediately after creating aclustered index; cluster
ratios are 1.00000 or .999997, for example. Rows on the data pages are
stored the same order asthe rows in the index. The number of logical and
physical 1/0s needed for the data pagesis (basically) the number of rows
to be returned, divided by the number of rows per page. For atable with
10 rows per page, a query that needs to return 500 rows needs to read 50
pages if the datarow cluster ratiois 1.

When the data row cluster ratio is extremely low, the datarows are
scattered on data pages with no relationship to the ordering of the keys.
Nonclustered indexes often have low datarow cluster ratios, sincethereis
no relationship between the ordering of the index keys and the ordering of
the data rows on data pages. When the datarow cluster ratio is 0, or close
to 0, the number of physical and logical I/Osrequired could be as much as
1 data page 1/0 for each row to be returned. A query that needs to return
500 rows needs to read 500 pages, or nearly 500 pages, if the data row
cluster ratio is near 0 and the rows are widely scattered on the data pages.
In ahugetable, this still provides good performance, but in atable with
lessthan 500 pages, the optimizer chooses the cheaper alternative—atable
scan.

The size of the data cacheis also used in calculating the physical 1/0. If
the datarow cluster ratiois very low, and the cacheis small, pages may be
flushed from cache before they can be reused. If the cache islarge, the
optimizer estimates that some pages will be found in cache.

CHAPTER 20 Access Methods and Query Costing for Single Tables

Result-set size and index use

A range query that returns asmall number of rows performswell with the
index, however, range queries that return alarge number of rows may not
use the index—it may be more expensive to perform the logical and
physical 1/O for alarge number of index pages plus alarge number of data
pages. The lower the datarow cluster ratio, the more expensiveit isto use
the index.

At the leaf level of anonclustered index or a clustered index on a data-
only-locked table, the keys are stored sequentially. For a search argument
on avalue that matches 100 rows, the rows on the index leaf level fit on
perhaps one or two index pages. The actual data rows might all be on
different data pages. The following queries show how different data row
cluster ratiosaffect 1/0 estimates. The authors table usesdatarowslocking,
and has these indexes:

* A clustered index on au_Iname
* A nonclustered index on state
Each of these queries returns about 100 rows:

sel ect au_l nane, phone

from aut hors

where au_| nane |ike "E%

sel ect au_id, au_l nane, phone
from aut hors

where state = "NC'

The following table shows the data row cluster ratio for each index, and
the optimizer’s estimate of the number of rows to be returned and the
number of pages required.

SARG on Datarow cluster ratio Row estimate Page estimate Datal/O size
au_lname .999789 101 8 16K
state .232539 103 83 2K

The basic information on the tableis:
¢ Thetable has 262 pages.
e Thereare 19 rows per datapagein the table.

441

Evaluating the cost of index access

While each of the queries hasits search clausesin valid search-argument
form, and each of the clauses matches an index, only thefirst query uses
the index: for the other query, atable scan is cheaper than using the index.
With 262 pages, the cost of the table scanis:

Table scan cost = (262/8)=37*18 =666
+ 262*2 =524
1190

Closer look at the Search Argument costing

442

Looking more closely at the tables, cluster ratios, and search arguments
explains why the table scan is chosen:

e Theestimate for the clustered index on au_Iname includes just 8
physical 1/Os:

e 61/0s(using 16K 1/0O) on the data pages, because the datarow
cluster ratio indicates very high clustering.

e 21/Osfortheindex pages (there are 128 rows per leaf page); 16K
I/0O isalso used for the index leaf pages.

e Thequery using the search argument on state hasto read many more
data pages, since the datarow cluster ratio is low. The optimizer
chooses 2K 1/0 on the data pages. 83 physical 1/0s is more than
double the physical 1/O required for atable scan (using 16K 1/0O).

CHAPTER 20 Access Methods and Query Costing for Single Tables

Costing for noncovering index scans

Leaf pages =
Data pages =

Scan cost =

The basic formula for estimating 1/O for queries accessing the data
through a noncovering index is:

Number of qualified rows / Leaf level rows per page
Number of qualifying rows * Data row cluster adjustment

Number of nonleaf index levels * 18
+ (Leaf pages / Pages per 10) * Data page cluster adjustment * 18
+ (Data pages / Pages per 10) * Data page cluster adjustment * 18
+ Number of nonleaf index levels * 18
+ Leaf pages * 2
+ Number of qualifying rows * Data row cluster adjustment * 2

Costing for forwarded rows

If adata-only-locked table has forwarded rows, the cost of the extral/O
for accessing forwarded rows is added for noncovered index scans. The
cost iscomputed by multiplying the number of forwarded rowsinthetable
and the percent of the rows from the table that to be returned by the query.
The added cost is:

Forwarded row cost = % of rows returned * Number of forwarded rows in the table

Costing for queries using order by

Queriesthat perform sortsfor order by may create and sort, or they may be
able to use the index to return rows by relying on the index ordering. For
example, the optimizer chooses one of these access methods for a query
with an order by clause:

* With no useful search arguments — use a table scan, followed by
sorting the worktable.

443

Costing for queries using order by

« With selective search argument or join on an index that does not
match the order by clause — use an index scan, followed by sorting the
worktable.

e With asearch argument or join on an index that matches the order by
clause — an index scan using thisindex, with no worktable or sort.

Sorts are always required for result sets when the columnsin the result set
are asuperset of the index keys. For example, if the index on authors
includesau_fname and au_Iname, and the order by clause also includesthe
au_id, the query requires a sort.

If there are search arguments on indexes that match the order by clause,
and other search arguments on indexes that do not support the required
ordering, the optimizer costs both access methods. If the worktable and
sort isrequired, the cost of performing thel/O for these operationsis added
to the cost of the index scan. If an index is potentially useful to help avoid
the sort, dbcc traceon(302) prints a message while the search or join
argument costing takes place.

See “Sort avert messages’ on page 881 for more information.

Besides the availability of indexes, two major factors determine whether
theindex is considered:

e Theorder by clause must specify a prefix subset of the index keys.

e Theorder by clause and the index must have compatible
ascending/descending key ordering.

Prefix subset and sorts

444

For a query to use an index to avoid a sort step, the keys specified in the
order by clause must be a prefix subset of the index keys. For example, if
the index specifiesthekeysasA, B, C, D:

e Thefollowing order by clauses can use the index:

« A

« AB

- A/B,C

- A/BCD

* And other set of columns cannot usetheindex. For example, these are
not prefix subsets:

CHAPTER 20 Access Methods and Query Costing for Single Tables

« AC
« B,CD

Key ordering and sorts

Both order by clauses and commandsthat create indexes can usetheasc or
desc (ascending or descending) ordering qualifications:

» For index creation, the asc and desc qualifications specify the order
in which keys are to be stored in the index.

* Intheorder by clause, the ordering qualifications specify the order in
which the columns are to be returned in the output.

To avoid a sort when using a specific index, the asc or desc qualifications
in the order by clause must either be exactly the same as those used to
create the index, or must be exactly the opposite.

Specifying ascending or descending order for index keys

Queriesthat use amix of ascending and descending order in an order by
clause do not perform a separate sort step if the index was created using
the same mix of ascending and descending order as that specified in the
order by clause, or if theindex order isthereverse of the order specifiedin
the order by clause. Indexes are scanned forward or backward, following
the page chain pointers at the leaf level of the index.

For example, this command creates an index on thetitles table with pub_id
ascending and pubdate descending:

create index pub_ix
on titles (pub_id asc, pubdate desc)

The rows are ordered on the pages as shown in Figure 20-4. When the
ascending and descending order in the query matches the index creation
order, the result isaforward scan, starting at the beginning of theindex or
at thefirst qualifying row, returning the rowsin order from each page, and
following the next-page pointers to read subsequent pages.

If the ordering in the query isthe exact opposite of the index creation
order, theresult is abackward scan, starting at the last page of theindex or
the page containing the last qualifying row, returning rows in backward
order from each page, and following previous page pointers.

445

Costing for queries using order by

446

Figure 20-4: Forward and backward scans on an index

Forward scan: scans rows in
order on the page, then
follows the next-page

Backward scan: scans rows in
reverse order on the page, then
follows the previous-page

Page 1132 Page 1133
P073 10/14/93
Po87 12/01/93
Po87 10/4/93
11/26/93 pP087 9/7/93
Page 1132 e Page 1133
P066 12/20/93 P073 10/14/93
P087 12/01/93
pP087 10/4/93
P087 9/7/93

The following query using the index shown in Figure 20-4 performs a
forward scan:

sel ect *
fromtitles
order by pub_id asc, pubdate desc

This query using the index shown in Figure 20-4 performs a backward
scan:

sel ect *
fromtitles
order by pub_id desc, pubdate asc

For the following two queries on the same table, the plan requires a sort
step, sincethe order by clauses do not match the ordering specified for the
index:

sel ect *

fromtitles

order by pub_id desc, pubdate desc
sel ect *

fromtitles

order by pub_id asc, pubdate asc

Note Parallel sort operationsare optimized very differently for partitioned
tables. See Chapter 24, “Parallel Sorting,” for more information.

CHAPTER 20 Access Methods and Query Costing for Single Tables

How the optimizer costs sort operations
When Adaptive Server optimizes queries that require sorts:

It computes the cost of using an index that matches the required sort
order, if such an index exists.

It computes the physical and logical I/O cost of creating aworktable
and performing the sort for every index where the index order does
not match the sort order. It computes the physical and logical 1/O cost
of performing atable scan, creating a worktable, and performing the
sort.

Adding the cost of creating and sorting the worktable to the cost of index
access and the cost of creating and sorting the worktabl e favors the use of
an index that supports the order by clause. However, when comparing
indexesthat are very selective, but not ordered, versus indexes that are
ordered, but not selective:

Access costs are low for the more selective index, and so are sort
costs.

Access costs are high for the less selective index, and may exceed the
cost of access using the more selective index and sort.

Allpages-locked tables with clustered indexes

For allpages-locked tables with clustered indexes, order by queries that
match the index keys are efficient if:

Thereis also a search argument that uses the index, the index key
positions the search on the data page for first qualifying row.

The scan followsthe next-page pointersuntil all qualifying rowshave
been found.

No sort is needed.

In Figure 20-5, the index was created in ascending order, and the order by
clause does not specify the order, so ascending is used by default.

447

Costing for queries using order by

448

select fname, Iname, id
from employees
where Iname between "Dull"

Figure 20-5: An order by query using a clustered index, allpages
locking

and "Greene"
order by Iname Page 1132
. Bennet
Clustered index on Iname Chan
Dull
) Edwards
Key Pointer
Page 1007
Bennet 1132 Page 1133
Key Pointer Greane 1133 Greane
Green 1144 Greaves
Page TOUT Hunter 1127 Greco
Bennet 1007
Karsen 1009 Page 1009
Smith 1062 Karsen 1009 Page 1144
Green
v Greene
Highland
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Queries requiring descending sort order (for example, order by title_id
desc) can avoid sorting by scanning pagesin reverse order. If the entire
tableis needed for a query without a where clause, Adaptive Server
followstheindex pointersto thelast page, and then scans backward using
the previous page pointers. If the where clause includes an index key, the
index is used to position the search, and then the pages are scanned
backward, as shownin Figure 20-6.

CHAPTER 20 Access Methods and Query Costing for Single Tables

Figure 20-6: An order by desc query using a clustered index

select fname, Iname, id Page 1132
from employees A Bennet
where Iname <= "Highland" Chan
order by Iname desc Dull
Clustered index on Iname Edwards
Key Pointer
Page 1133
Page 1007 Greane
. Bennet 1132 Greaves
Key Pointer Greane 1133 Greco
Page 1001 Green 1144
Bennet 1007 | Hunter 1127
|10
Karsen 1009 Green
Greene
Highland
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Sorts when index covers the query

When an index covers the query and the order by columns form a prefix
subset of the index keys, the rows are returned directly from the
nonclustered index leaf pages. If the columns do not form a prefix subset
of the index keys, aworktable is created and sorted.

With a nonclustered index on au_Iname, au_fname, au_id of the authors
table, this query can return the data directly from the leaf pages:

select au_id, au_l nane
from aut hors
order by au_l name, au_fname

449

Costing for queries using order by

Sorts and noncovering indexes

With a noncovering index, Adaptive Server determineswhether using the
index that supports the ordering requirements is cheaper than performing
atable scan or using amore selective index, and then inserting rows into
aworktable and sorting the data. The cost of using the index depends on

the number of rows and the data row cluster ratio.

Backward scans and joins

If two or more tables are being joined, and the order by clause specifies
descending order for index keys on the joined tables, any of the tablesand
indexes involved can be scanned with a backward scan to avoid the
worktable and sort costs. If al the columns for one table are in ascending
order, and the columnsfor the other tables arein descending order, thefirst
tableis scanned in ascending order and the others in descending order.

Deadlocks and descending scans

450

Descending scans may deadlock with queries performing update
operations using ascending scans and with queries performing page splits
and shrinks, except when the backward scans are performed at transaction
isolation level 0.

The allow backward scans configuration parameter controls whether the
optimizer uses the backward scan strategy. The default value of 1 allows
descending scans.

See the System Administration Guide for more information on this
parameter.

Also, see “Index scans’ on page 961 for information on the number of
ascending and descending scans performed and “ Deadlocks by lock type”
on page 969 for information on detecting deadlocks.

CHAPTER 20 Access Methods and Query Costing for Single Tables

Access Methods and Costing for or and in Clauses

When a query on a single table contains or clauses or an in (values_list)
clause, it can be optimized in different ways, depending on the presence of
indexes, the selectivity of the search arguments, the existence of other
search arguments, and whether or not the clauses might return duplicate
rows.

or syntax
or clauses take one of the following forms:

where column_namel = <value>
or column_namel = <value>

or:

where column_namel = <value>
or column_name2 = <value>

in (values_list) converts to or processing
Preprocessing convertsin lists to or clauses, so this query:

select title_id, price
fromtitles
where title_id in ("PS1372", "PS2091","PS2106")

becomes:

select title_id, price
fromtitles
where title_id = "PS1372"
or title_id " PS2091"
or title_id " PS2106"

451

Access Methods and Costing for or and in Clauses

Methods for processing or clauses

A single-table query including or clauses is a union of more than one
query. Although some rows may match more than one of the conditions,
each row must be returned only once. Depending on indexes and query
clauses, or queries can be resolved by one of these methods:

452

If any of the clauses linked by or is not indexed, the query must use a
table scan. If there is an index on type, but no index on advance, this
query performs a table scan:

select title_id, price
fromtitles
where type = "busi ness" or advance > 10000

If there is a possibility that one or more of the or clauses could match
values in the same row, the query is resolved using the OR strategy,
also known as using a dynamic index. The OR strategy selects the
row |1Ds for matching rows into aworktable, and sorts the worktable
to remove duplicate row IDs. For example, there can be rows for
which both of these conditions are true:

select title_id
fromtitles
where pub_id = "P076" or type > "business"

If thereisanindex on pub_id, and another ontype, the OR strategy can
be used.

See “Dynamic index (OR strategy)” on page 454 for more
information.

Note The OR Srategy (multiple matching index scans) is only
considered for equality predicates. It is disqualified for range
predicates even if meeting other conditions. As an example, when a
select statement contains the following:

where bar between 1 and 5
or bar between 10 and 15

Thiswill not be considered for the OR Srategy.

If thereisno possihility that the or clauses can select the same row, the
query can be resolved with multiple matching index scans, also
known as the special OR strategy. The special OR strategy does hot
requireaworktable and sort. The or clausesin this query cannot select
the same row twice:

CHAPTER 20 Access Methods and Query Costing for Single Tables

select title_id, price
fromtitles
where pub_id = "P076" or pub_id = "P087"

With an index on pub_id, this query can be resolved using two
matching index scans.

See “Multiple matching index scans (special OR strategy)” on page
456 for more information.

» Thecosts of index access for each or clause are added together, and
the cost of the sort, if required. If sum of these costsis greater than a
table scan, the table scan is chosen. For example, this query uses a
table scan if the total cost of all of the indexed scanson pub_id is
greater than the table scan:

select title_id, price

fromtitles

where pub_id in ("P095", "P099", "P128", "P220",
"P411", "P445", "P580", "P988")

» If the query contains additional search arguments on indexed
columns, predicate transformation may add search argumentsthat can
be optimized, adding alternative optimization options. The cost of
using all alternative access methods is compared, and the cheapest
alternativeis selected. This query contains a search argument on type
aswell as clauses linked with or:

select title_id, type, price fromtitles
where type = "busi ness"
and (pub_id = "P076" or pubdate > "12/1/93")

With aseparate index on each search argument, the optimizer usesthe
least expensive access method:

¢ Theindex on type

¢ TheOR strategy on pub_id and pubdate

When table scans are used for or queries

A query with or clauses or an in (values_list) uses atable scan if either of
these conditionsistrue:

» Thecost of al theindex accessesis greater than the cost of atable
scan, or

» Atleast oneof the columnsis not indexed, so the only way to resolve
the query conditionsis to perform atable scan.

453

Access Methods and Costing for or and in Clauses

Dynamic index (OR strategy)

454

If the query usesthe OR strategy because the query could return duplicate
rows, the appropriateindexes are used to retrieve the row IDsfor rowsthat
satisfy each or clause. The row IDs for each or clause are stored in a
worktable. Since the worktable contains only row IDs, itiscalled a
“dynamic index.” Adaptive Server then sorts the worktable to remove the
duplicaterow IDs. Therow IDsare used to retrieve the rows from the base
tables. The total cost of the query includes:

* Thesum of theindex accesses, that is, for each or clause, the cost of
using the index to access the row 1Ds on the leaf pages of the index
(or on the data pages, for a clustered index on an allpages-locked
table)

e The cost of reading the worktable and performing the sort
e Thecost of using the row 1Ds to access the data pages

Figure 20-7 illustratesthe process of building and sorting adynamicindex
for an or query on two different columns.

CHAPTER 20 Access Methods and Query Costing for Single Tables

select title_id, price
from titles

Figure 20-7: Resolving or queries using the OR strategy

where price <= $15 or title like "Compute%"

_ Find rows on Save results Sort and Access rows on
index leaf pages in a worktable remove duplicates data pages
. - Page 1441
title_id_ix Tricks . g $23
Page 1239 Computer... |$29
Backwards... | 1527, 4 Garden... $20
Computer... | 1441,4 Best... $50
Computer... 1537,2 \
Optional... 1923,7
. ;’sz RZW Page 1537
1537) Using ... $27
1041 5 ! Computer... [$15
o | New... $18
price_ix 1537 2 Home.. [$44
Page 1473 1822 5
$14 1427, 8
$15 1941, 2
$15 1537, 2 to page 1882
$15 1822, 5 (to pag)
$16 1445,6
' (to page 1941)

Asshown in Figure 20-7, the optimizer can chooseto use adifferent index
for each clause.

showplan displays “Using Dynamic Index” and “ Positioning by Row
[Dentifier (RID)” when the OR strategy is used.

See “Dynamic index message (OR strategy)” on page 807 for more
information.

Queriesin cursors cannot use the OR strategy, but must perform atable
scan. However, queries in cursors can use the multiple matching index
scans strategy.

Locking during queries that use the OR strategy depends on the locking
scheme of the table.

455

How aggregates are optimized

Multiple matching index scans (special OR strategy)

Adaptive Server uses multiple matching index scans when the or clauses
are on the same table, and there is no possibility that the or clauses will
return duplicate rows. For example, this query cannot return any duplicate
rows:

select title
fromtitles
where title_id in ("T6650", "T95065", "T11365")

This query can beresolved using multiple matching index scans, using the
index ontitle_id. Thetotal cost of the query isthe sum of the multipleindex
accesses performed. If the index on title_id has 3 levels, each or clause
requires 3 index reads, plus one data page read, so the total cost for each
clauseis4logical and 4 physical 1/0s, and thetotal query cost isestimated
to be 12 logical and 12 physical 1/Os.

The optimizer determineswhich index to usefor each or clause or valuein
thein (values_list) clause by costing each clause or value separately. If each
column named in aclauseisindexed, adifferent index can be used for each
clause or value. showplan displays the message “Using N Matching Index
Scans’ when the special OR strategy is used.

See “Matching index scans message” on page 806.

How aggregates are optimized

456

Aggregates are processed in two steps:

« Firgt, appropriate indexes are used to retrieve the appropriate rows, or
atable scanisperformed. For vector (grouped) aggregates, theresults
are placed in aworktable. For scalar aggregates, results are computed
inavariable in memory.

» Second, the worktable is scanned to return the results for vector
aggregates, or the results are returned from the internal variable.

Vector aggregates can use a covering composite index on the aggregated
column and the grouping column, if any, rather than performing table
scans. For example, if thetitles table has a nonclustered index on type,
price, the following query retrievesitsresults by scanning the leaf level of
the nonclustered index:

CHAPTER 20 Access Methods and Query Costing for Single Tables

sel ect type, avg(price)
fromtitles

group by type

Scalar aggregates can also use covering indexes to reduce I/O. For
example, the following query can use the index on type, price:

sel ect mn(price)
fromtitles

Table 20-1 shows some of the access methods that the optimizer can
choosefor querieswith aggregates when thereisno where, having or group
by clause in the query.

Table 20-1: Special access methods for aggregates

Aggregate Index description Access method
min Scalar aggregate isleading column Usefirst the value on the root page of the index.
max Clustered index on an allpages- Follow the last pointer on root page and
locked table intermediate pages to data page, and return the last
value.
Clustered index on a data-only- Follow last pointer on root page and intermediate
locked table pages to leaf page, and return the last value.
Any nonclustered index
count(*) Nonclustered index or clustered Count all rowsintheleaf level of theindex with the
index on adata-only-locked table ~ smallest number of pages.
count(col_name) Covering nonclustered index, or Count all non-null valuesin the leaf level of the

covering clustered index on data- smallest index containing the column name.
only-locked table

Combining max and min aggregates

When used separately, max and min aggregates on leading index columns
use special processing if there is no where clause in the query:

* min aggregates retrieve the first value on the root page of the index,
performing a single read to find the value.

* max aggregates follow the last entry on the last page at each index
level until they reach the leaf level.

However, when min and max are used together, this optimization is not
available. Theentireleaf level of anindex isscanned to locate thefirst and
|ast values.

min and max optimizations are not applied if:

457

How update operations are performed

e Theexpression inside the max or min function is anything but a

column. When numeric_col has a nonclustered index:

e max(numeric_col*2) contains an operation on a column, so the
query performs aleaf-level scan of the index.

e max(numeric_col)*2 uses max optimization, because the
multiplication is performed on the result of the function.

e Thereisanother aggregate in the query.

* Thereisagroup by clause.

Queries that use both min and max

If you have max and min aggregates that can be optimized, you should get
much better performance by putting them in separate queries. For
example, even if thereisan index with price as the leading key, this query
resultsin afull leaf-level scan of the index:

sel ect max(price), mn(price)
fromtitles

When you separate them, Adaptive Server uses the index once for each of
the two queries, rather than scanning the entire leaf level. This example
shows two queries:

sel ect max(price)
fromtitles

sel ect mn(price)
fromtitles

How update operations are performed

Direct updates

458

Adaptive Server handles updates in different ways, depending on the
changes being made to the data and the indexes used to locate the rows.
Thetwo magjor types of updates are deferred updatesand dir ect updates.
Adaptive Server performs direct updates whenever possible.

Adaptive Server performs direct updatesin a single pass:

CHAPTER 20 Access Methods and Query Costing for Single Tables

In-place updates

* Itlocates the affected index and data rows.

e Itwritesthelog records for the changesto the transaction log.

¢ It makes the changes to the data pages and any affected index pages.
There are three techniques for performing direct updates:

* In-place updates

e Cheap direct updates

» Expensive direct updates

Direct updates require less overhead than deferred updates and are
generally faster, as they limit the number of log scans, reduce logging,
save traversal of index B-trees (reducing lock contention), and save 1/0
because Adaptive Server does not have to refetch pages to perform
modifications based on log records.

Adaptive Server performsin-place updates whenever possible.

When Adaptive Server performs an in-place update, subsequent rows on
the page are not moved; the row |1Ds remain the same and the pointersin
the row offset table are not changed.

For an in-place update, the following requirements must be met:
» Therow being changed cannot change its length.

» The column being updated cannot be the key, or part of the key, of a
clustered index on an allpages-locked table. Because the rowsin a
clustered index on an allpages-locked table are stored in key order, a
change to the key almost always means that the row location is
changed.

* Oneor more indexes must be unique or must allow duplicates.

» The update statement satisfies the conditions listed in “ Restrictions
on update modes through joins’ on page 465.

» The affected columns are not used for referentia integrity.
» There cannot be atrigger on the column.

» Thetable cannot be replicated (via Replication Server).

459

How update operations are performed

Cheap direct updates

An in-place update is the fastest type of update because it makes asingle
change to the data page. It changes all affected index entries by deleting
the old index rows and inserting the new index row. I n-place updates affect
only indexes whose keys are changed by the update, since the page and
row locations are not changed.

If Adaptive Server cannot perform an updatein place, it triesto perform a
cheap direct update—changing the row and rewriting it at the same offset
on the page. Subsequent rows on the page are moved up or down so that
the dataremains contiguous on the page, but the row 1Ds remain the same.
The pointersin the row offset table change to reflect the new locations.

A cheap direct update,must meet these requirements:

« Thelength of the datain the row is changed, but the row still fits on
the same data page, or the row length is not changed, but thereisa
trigger on the table or the table is replicated.

* The column being updated cannot be the key, or part of the key, of a
clustered index. Because Adaptive Server stores the rows of a
clusteredindex in key order, achangeto the key almost always means
that the row location is changed.

e Oneor moreindexes must be unique or must allow duplicates.

e The update statement satisfies the conditions listed in “Restrictions
on update modes through joins’ on page 465.

» The affected columns are not used for referential integrity.

Cheap direct updates are amost as fast as in-place updates. They require
the same amount of /O, but dightly more processing. Two changes are
made to the data page (the row and the offset table). Any changed index
keys are updated by deleting old values and inserting new values. Cheap
direct updates affect only indexes whose keys are changed by the update,
since the page and row ID are not changed.

Expensive direct updates

460

If the data does not fit on the same page, Adaptive Server performs an
expensivedirect update, if possible. An expensivedirect update del etesthe
datarow, including all index entries, and then insertsthe modified row and
index entries.

CHAPTER 20 Access Methods and Query Costing for Single Tables

Adaptive Server uses atable scan or anindex to find therow initsoriginal
location and then deletes the row. If the table has a clustered index,
Adaptive Server uses the index to determine the new location for the row;
otherwise, Adaptive Server inserts the new row at the end of the heap.

An expensive direct updatemust meet these requirements:

¢ Thelength of adatarow is changed so that the row no longer fits on
the same data page, and the row is moved to a different page, or the
update affects key columns for the clustered index.

¢ Theindex used to find the row is not changed by the update.

¢ The update statement satisfies the conditionslisted in “ Restrictions
on update modes through joins” on page 465.

¢ The affected columns are not used for referential integrity.

An expensive direct update isthe slowest type of direct update. The delete
is performed on one data page, and the insert is performed on a different
data page. All index entries must be updated, since the row locationis
changed.

Deferred updates

Adaptive Server uses deferred updates when direct update conditions are
not met. A deferred update is the slowest type of update.

In a deferred update, Adaptive Server:

» Locatesthe affected data rows, writing the log records for deferred
delete and insert of the data pages as rows are located.

» Readsthelog records for the transaction and performs the deletes on
the data pages and any affected index rows.

» Readsthelog records a second time, and performs all inserts on the
data pages, and inserts any affected index rows.

When deferred updates are required
Deferred updates are always required for:

¢ Updates that use self-joins
¢ Updatesto columns used for self-referential integrity

461

How update operations are performed

« Updatesto atable referenced in a correlated subquery
Deferred updates are a so required when:

e The update moves arow to a new page while the table is being
accessed viaatable scan or a clustered index.

e Duplicate rows are not alowed in the table, and there is no unique
index to prevent them.

e Theindex used to find the datarow is not unique, and therow is
moved because the update changesthe clustered index key or because
the new row does not fit on the page.

Deferred updates incur more overhead than direct updates because they
require Adaptive Server to reread the transaction log to make the final
changes to the data and indexes. Thisinvolves additional traversal of the
index trees.

For example, if thereisaclustered index on title, this query performs a
deferred update:

update titles set title ="Portabl e C Software" where
title = "Designing Portable Software"

Deferred index inserts

462

Adaptive Server performs deferred index updates when the update affects
the index used to access the table or when the update affects columnsin a
unique index. In this type of update, Adaptive Server:

+ Deletestheindex entriesin direct mode

« Updates the data page in direct mode, writing the deferred insert
records for the index

« Readsthelog recordsfor the transaction and inserts the new valuesin
theindex in deferred mode

Deferred index insert mode must be used when the update changes the
index used to find the row or when the update affects a unique index. A
query must update a single, qualifying row only once—deferred index
update mode ensures that arow is found only once during the index scan
and that the query does not prematurely violate a uniqueness constraint.

CHAPTER 20 Access Methods and Query Costing for Single Tables

The update in Figure 20-8 changes only the last name, but the index row
is moved from one page to the next. To perform the update, Adaptive
Server:

1 Readsindex page 1133, deletesthe index row for “ Greene” from that
page, and logs a deferred index scan record.

2 Changes“Green” to “Hubbard” on the data page in direct mode and
continues the index scan to see if more rows need to be updated.

3 Insertsthe new index row for “Hubbard” on page 1127.

Figure 20-8 shows the index and data pages prior to the deferred update
operation, and the sequence in which the deferred update changesthe data
and index pages.

463

How update operations are performed

update employee
set Iname = "Hubbard"
where Iname = "Green"

Before update

Key RowlID Pointer
Page 1001
Bennet [14211 [1007
Karsen [1411,3 1009
Smith 1307,2 | 1062
Root page
Update steps

464

Figure 20-8: Deferred index update

Page 1242
Key Pointer 10| O'Leary
Page 1132 111 Ringer
Bennet | 14211 g g‘gr‘]'f(?ns
Key RowlID Pointer Chan 1129,3
Page 1007 Dull 1409,1 Page T307
Bennet | 1421,1| 1132 Edwards | 1018,5 14 Hunter
Greane | 1307,4| 1133 15 Smith
Hunter | 1307,1| 1127 T 16 Ringer
Greane | 1307,4 17 | Greane
Green 14212
Page 1009 Greene | 1409,2 Page 1421
Karsen |1411,3 |1315 18 Bennet
19 Green
Page 1127 20 Yokomoto
Hunter 1307,1
Jenkins | 12424 Page TA09
21 Dull
22 Greene
23 White
Intermediate Leaf pages Data pages
Step 1: Write log Page 1133
records, then delete Greane | 13074
index row. Greene 1409,2 \
Step 2: Change data Page 1421
page. 18 Bennet
19 Hubbard
20 Yokomoto
Step 3: Read log, Page 1127
insert index row. Hubbard | 1421,2
Hunter 1307,1
Jenkins 1242,4

CHAPTER 20 Access Methods and Query Costing for Single Tables

Assume a similar update to thetitles table:

update titles

set title = "Conmputer Phobic's Manual ",
advance = advance * 2

where title Iike "Conmputer Phob%

This query shows a potential problem. If ascan of the nonclustered index
on thetitle column found “Computer Phobia Manual,” changed the title,
and multiplied the advance by 2, and then found the new index row
“Computer Phobic’s Manual” and multiplied the advance by 2, the
advance wold be very skewed against the reality.

A deferred index delete may be faster than an expensive direct update, or
it may be substantially slower, depending on the number of log records
that need to be scanned and whether the log pages are still in cache.

During deferred update of a data row, there can be a significant time
interval between the del ete of theindex row and theinsert of the new index
row. During thisinterval, thereis no index row corresponding to the data
row. If aprocess scanstheindex during thisinterval at isolation level 0, it
will not return the old or new vaue of the data row.

Restrictions on update modes through joins

Updates and del etes that involve joins can be performed in direct,
deferred_varcal, or deferred_index mode when the table being updated is
the outermost tableinthejoin order, or whenitispreceded in thejoin order
by tables where only asingle row qualifies.

Joins and subqueries in update and delete statements

Theuse of the from clauseto perform joinsin update and delete statements
isaTransact-SQL extensionto ANSI SQL. Subqueriesin ANSI SQL form
can be used in place of joins for some updates and del etes.

This example uses the from syntax to perform ajoin:

update t1 set tl.cl =1tl.cl + 50
fromtl, t2

where tl.cl =t2.cl

and t2.¢c2 =1

The following example shows the equivalent update using a subquery:

update t1 set cl = cl + 50

465

How update operations are performed

where tl.cl in (select t2.cl
fromt2
where t2.c2 = 1)

The update mode that is used for the join query depends on whether the
updated table is the outermost query in the join order—if it is not the
outermost table, the updateis performed in deferred mode. The update that
uses a subquery is always performed as a direct, deferred_varcol, or
deferred_index update.

For a query that uses the from syntax and performs a deferred update due
to the join order, use showplan and statistics io to determine whether
rewriting the query using a subquery can improve performance. Not all
queries using from can be rewritten to use subqueries.

Deletes and updates in triggers versus referential integrity

Optimizing updates

466

Triggers that join user tables with the deleted or inserted tablesarerunin
deferred mode. If you are using triggers solely to implement referential
integrity, and not to cascade updates and deletes, then using declarative
referential integrity in place of triggers may avoid the penalty of deferred
updatesin triggers.

showplan messages provide information about whether an update is
performed in direct mode or deferred mode. If a direct update is not
possible, Adaptive Server updates the data row in deferred mode. There
are times when the optimizer cannot know whether a direct update or a
deferred update will be performed, so two showplan messages are
provided:

» The"deferred varcol” message showsthat the update may changethe
length of the row because a variable-length column is being updated.
If the updated row fits on the page, the update is performed in direct
mode; if the update does not fit on the page, the update is performed
in deferred mode.

e The"deferred_index” message indicates that the changes to the data
pages and the del etesto theindex pages are performed in direct mode,
but the inserts to the index pages are performed in deferred mode.

CHAPTER 20 Access Methods and Query Costing for Single Tables

These types of direct updates depend on information that isavailable only
at runtime, since the page actually hasto be fetched and examined to
determine whether the row fits on the page.

Designing for direct updates

When you design and code your applications, be aware of the differences
that can cause deferred updates. Follow these guidelines to help avoid
deferred updates:

» Createat least one uniqueindex on thetable to encourage more direct
updates.

* Whenever possible, use nonkey columnsin the where clause when
updating a different key.

* If youdo not use null valuesin your columns, declare them as not null
in your create table statement.

Effects of update types and indexes on update modes

Table 20-2 shows how indexes affect the update mode for three different
types of updates. In all cases, duplicate rows are not allowed. For the
indexed cases, the index is on title_id. The three types of updates are:

¢ Update of avariable-length key column:

update titles set title_id = val ue
where title_id = "T1234"

» Update of afixed-length nonkey column:

update titles set pub_date = val ue
where title id = "T1234"

¢ Update of avariable-length nonkey column:;

update titles set notes = val ue
where title id = "T1234"

Table 20-2 shows how auniqueindex can promote a more efficient update
mode than a nonunique index on the same key. Pay particular attention to
the differencesbetween direct and deferred in the shaded areas of thetable.
For example, with aunique clustered index, all of these updates can be
performed in direct mode, but they must be performed in deferred mode if
the index is nonunique.

467

How update operations are performed

For atable with a nonunique clustered index, a unique index on any other
columninthetable providesimproved update performance. In some cases,
you may want to add an IDENTITY column to atable in order to include
the column as akey in an index that would otherwise be nonunique.

Table 20-2: Effects of indexing on update mode

Update To:

Variable- Fixed-length Variable-
Index length key column length column
No index N/A direct deferred varcol
Clustered, unique direct direct direct
Clustered, not unique deferred deferred deferred
Clustered, not unique, with a deferred direct deferred varcol
unigue index on another column
Nonclustered, unique deferred_varcol direct direct
Nonclustered, not unique deferred_varcol direct deferred_varcol

If the key for anindex isfixed length, the only difference in update modes
from those shown in the table occurs for nonclustered indexes. For a
nonclustered, nonunique index, the update mode is deferred_index for
updates to the key. For a nonclustered, unique index, the update mode is
direct for updates to the key.

If the length of varchar or varbinary is close to the maximum length, use
char or binary instead. Each variable-length column adds row overhead
and increases the possibility of deferred updates.

Using max_rows_per_page to reduce the number of rows allowed on a
page increases direct updates, because an update that increases the length
of avariable-length column may till fit on the same page.

For more information on using max_rows_per_page, see “Using
max_rows_per_page on allpages-locked tables’ on page 291.

Using sp_sysmon while tuning updates

468

You can use showplan to determinewhether an updateis deferred or direct,
but showplan does not give you detailed information about the type of
deferred or direct update. Output from the sp_sysmon or Adaptive Server
Monitor supplies detailed statistics about the types of updates performed
during asampleinterval.

CHAPTER 20 Access Methods and Query Costing for Single Tables

Run sp_sysmon as you tune updates, and look for reduced numbers of
deferred updates, reduced locking, and reduced 1/O.

See “Transaction detail” on page 942 for more information.

469

How update operations are performed

470

charTeErR 21 Accessing Methods and Costing
for Joins and Subqueries

This chapter introduces the methods that Adaptive Server uses to access
rows in tables when more than one table is used in a query, and how the
optimizer costs access.

Topic Page
Costing and optimizing joins 471
Nested-loop joins 476
Access methods and costing for sort-merge joins 479
Enabling and disabling merge joins 491
Reformatting strategy 492
Subquery optimization 493
or Clauses versus unionsin joins 504

In determining the cost of multitable queries, Adaptive Server uses many
of the same formulas discussed in Chapter 20, “ Access Methods and
Query Costing for Single Tables.”

Costing and optimizing joins

Joins extract information from two or moretables. In atwo-tablejoin, one
tableistreated asthe outer table and the other table istreated astheinner
table. Adaptive Server examines the outer table for rows that satisfy the
query conditions. For each row in the outer table that qualifies, Adaptive
Server then examines the inner table, looking at each row where the join
columns match.

Optimizing join queriesis extremely important for system performance,

sincerelational databases make heavy use of joins. Queries that perform
joinson several tables are especially critical to performance, as explained
in the following sections.

471

Costing and optimizing joins

Processing

In showplan output, the order of “FROM TABLE" messages indicatesthe
order in which Adaptive Server chooses to join tables.

See “FROM TABLE message” on page 775 for an example that joins
three tables. Some subqueries are also converted to joins.

See “Flattening in, any, and exists subqueries’ on page 494.

By default, Adaptive Server uses nested-loop joins, and also consider
merge joins, if this feature is enabled at the server-wide or session level.

When mergejoinsare enabled, Adaptive Server can use either nested-loop
joins or merge joins to process queries involving two or more tables. For
each join, the optimizer costs both methods. For queries involving more
than two tables, the optimizer examines query costs for merge joins and
for nested-loops, and chooses the mix of merge and nested-loop joins that
provides the cheapest query cost.

Index density and joins

472

The optimizer uses a statistic called the total density to estimate the
number of rowsin ajoined table that match a particular value during the
join.

See “Density values and joins’ on page 394 for more information.

The query optimizer usesthetotal density to estimate the number of rows
that will be returned for each scan of theinner table of ajoin. For example,
if the optimizer isconsidering anested-loop join with a250,000-row table,
and thetable hasadensity of .0001, the optimizer estimatesthat an average
of 25 rows from the inner table match for each row that qualifiesin the
outer table.

optdiag reports the total density for each column for which statistics have
been created. You can also see the total density used for joinsin dbcc
traceon(302) output.

CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries

Multicolumn densities

Adaptive Server maintains the total density for each prefix subset of
columns in a composite index. If two tables are being joined on multiple
leading columns of a composite index, the optimizer uses the appropriate
density for an index when estimating the cost of ajoin using that index. In
a10,000-row table with an index on seven columns, the entire seven-
column key might have adensity of 1/10,000, whilethefirst column might
have a density of only 1/2, indicating that it would return 5000 rows.

Datatype mismatches and joins

Join permutations

One of the most common problemsin optimizing joins on tables that have
indexesisthat the datatypes of the join columns are incompatible. When
this occurs, one of the datatypes must be converted to the other, and an
index can only be used for one side of the join.

See " Datatype mismatches and query optimization” on page 395 for more
information.

When you are joining four or fewer tables, Adaptive Server considers all
possible permutations of join orders for the tables. However, due to the
iterative nature of Adaptive Server’s optimizer, queries on more than four
tables examine join order combinationsin sets of two to four tables at a
time. This grouping during join order costing is used because the number
of permutations of join orders multiplies with each additional table,
requiring lengthy computation time for large joins. The method the
optimizer uses to determine join order has excellent results for most
gueries and requires much less CPU time than examining all permutations
of al combinations.

If the number of tablesin ajoin is greater than 25, Adaptive Server
automatically reduces the number of tables considered at atime. Table 21-
1 shows the default vaues.

473

Costing and optimizing joins

474

Table 21-1: Tables considered at atime during a join

Tables joined Tables considered at a time
4-25 4
26-37 3
38-50 2

The optimizer starts by considering the first two to four tables, and
determining the best join order for those tables. It remembers the outer
table from the best plan involving the tables it examined and eliminates
that table from the set of tables. Then, it optimizesthe best set of tables out
of the remaining tables. It continues until only two to four tables remain,
at which point it optimizes them.

For example, suppose you have aselect statement with the following from
clause:

fromT1l, T2, T3, T4, T5, T6

The optimizer looks at all possible sets of 4 tables taken from these 6
tables. The 15 possible combinations of all 6 tables are:

T1, T2, T3, T4
T1, T2, T3, T5
T1, T2, T3, T6
T1, T2, T4, TS5
T1, T2, T4, T6
T1, T2, T5, T6
T1, T3, T4, T5
T1, T3, T4, T6
T1, T3, TS5, T6
T1, T4, TS5, T6
T2, T3, T4, T5
T2, T3, T4, T6
T2, T3, T5, T6
T2, T4, TS5, T6
T3, T4, T5, T6

For each one of these combinations, the optimizer looks at all the join
orders (permutations). For each set of 4 tables, there are 24 possiblejoin
orders, for atotal of 360 (24 * 15) permutations. For example, for the set
of tables T2, T3, T5, and T6, the optimizer looks at these 24 possible orders:

T2, T3, TS5, T6
T2, T3, T6, T5
T2, T5, T3, T6
T2, T5, T6, T3
T2, T6, T3, TS5

CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries

T2, T6, T5, T3
T3, T2, T5, T6
T3, T2, T6, TS5
T3, T5, T2, T6
T3, T5, T6, T2
T3, T6, T2, T5
T3, T6, T5, T2
T5, T2, T3, T6
T5, T2, T6, T3
T5, T3, T2, T6
T5, T3, T6, T2
T5, T6, T2, T3
T5, T6, T3, T2
T6, T2, T3, T5
T6, T2, TS5, T3
T6, T3, T2, T5
T6, T3, TS5, T2
T6, T5, T2, T3
T6, T5, T3, T2

Let's say that the best join order is determined to be:
T5, T3, T6, T2
At this point, T5 is designated as the outermost table in the query.

The next step isto choose the second-outermost table. The optimizer
eliminates T5 from consideration asit chooses the rest of the join order.
Now, it has to determine where T1, T2, T3, T4, and T6 fit into the rest of
the join order. It looks at all the combinations of four tables chosen from
these five:

T1, T2, T3, T4
T1, T2, T3, T6
T1, T2, T4, T6
T1, T3, T4, T6
T2, T3, T4, T6

It looksat all the join ordersfor each of these combinations, remembering
that T5 isthe outermost tablein the join. Let’s say that the best order in
which to join the remaining tablesto T5 is:

T3, T6, T2, T4

So the optimizer chooses T3 as the next table after T5 in the join order for
the entire query. It eliminates T3 from consideration in choosing therest of
the join order.

The remaining tables are:

475

Nested-loop joins

T1, T2, T4, T6

Now we're down to 4 tables, so the optimizer looks at al the join orders
for all the remaining tables. Let’s say the best join order is:

T6, T2, T4, T1
This means that the join order for the entire query is:

TS5, T3, T6, T2, T4, T1

Outer joins and join permutations

Outer joinsrestrict the set of possiblejoin orders. When the inner member
of an outer join is compared to an outer member, the outer member must
precede the inner member in the join order. The only join permutations
that are considered for outer joins are those that meet thisrequirement. For
example, these two queries perform outer joins, thefirst using ANSI SQL
syntax, the second using Transact-SQL syntax:

select T1l.cl, T2.cl, T3.c2, T4.c2
fromT4 inner join Tl on Tl.cl = T4.cl
| eft outer join T2 on Tl.cl = T2.cl
left outer join T3 on T2.c2 = T3.c2
select Tl.cl, T2.cl, T3.c2, T4.c2
fromTl , T2, T3, T4

where Tl.cl *= T2.cl

and T2.c2 *= T3.c2

and Tl.cl = T4.c1

The only join orders considered place T1 outer to T2 and T2 outer to T3.
Thejoin orders considered by the optimizer are:

T1, T2, T3, T4
T1, T2, T4, T3
T1, T4, T2, T3
T4, T1, T2, T3

Nested-loop joins

476

Nested-loop joins provide efficient accesswhen tables areindexed onjoin
columns. The process of creating the result set for anested-loop joinisto
nest the tables, and to scan the inner tables repeatedly for each qualifying
row in the outer table, as shown in Figure 21-1.

CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries

Figure 21-1: Nesting of tables during a nested-loop join

For each qualifying row in TableA

Scan inner TableB

For each qualifying row in TableB

Scan innermost
TableC

In Figure 21-1, the access to the tables to be joined is nested:

TableA isaccessed once. If thetable hasno useful indexes, atable scan
is performed. If an index can reduce 1/O costs, the index is used to
|ocate the rows.

TableB is accessed once for each qualifying row in TableA. If 15 rows
from TableA match the conditionsin the query, TableB is accessed 15
times. If TableB hasauseful index onthejoin column, it might require
3 1/Osto read the data page for each scan, plus one 1/O for each data
page. The cost of accessing TableB would be 60 logical 1/0s.

TableC is accessed once for each qualifying row in TableB each time
TableB is accessed. If 10 rows from TableB match for each row in
TableA, then TableC is scanned 150 times. If each access to TableC
requires 3 I/Osto locate the data row, the cost of accessing TableC is
450 logical 1/0s.

If TableC issmall, or has a useful index, the 1/0O count stays reasonably
small. If TableC islarge and has no useful index on the join columns, the
optimizer may chooseto use asort-mergejoin or the reformatting strategy
to avoid performing extensive I/0.

477

Nested-loop joins

Cost formula

For anested-loop join with two tables, the formulafor estimating the cost
is:

Join cost = Cost of accessing A +
of qualifying rows in A * Pages of B to scan for each qualifying row

With additional tables, the cost of a nested-loop joinis:

Cost of accessing outer table

+ (Number of qualified rows in outer) * (Cost of accessing inner table)
+
+ (Number of qualified rows from previous) * (Cost of accessing innermost table)

How inner and outer tables are determined
The outer tableis usually the one that has:
e The smallest number of qualifying rows, and/or
e Thelargest numbers of 1/Os required to locate rows.
Theinner table usually has:
e Thelargest number of qualifying rows, and/or
e The smallest number of reads required to locate rows.

For example, when you joinalarge, unindexed tableto asmaller tablewith
indexes on the join key, the optimizer chooses:

e Thelarge table as the outer table, so that the large table is scanned
only once.

* Theindexed table as the inner table, so that each time theinner table
isaccessed, it takes only afew readsto find rows.

478

CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries

Access methods and costing for sort-merge joins

There are four possible execution methods for merge joins:

» Full-merge join —the two tables being joined have useful indexes on
the join columns. The tables do not need to be sorted, but can be
merged using the indexes.

» Left-mergejoin—sort theinner tableinthejoin order, then mergewith
the left, outer table.

* Right-mergejoin — sort the outer table in the join order, then merge
with the right, inner table.

» Sort-mergejoin — sort both tables, then merge.

Merge joins always operate on stored tables — either user tables or
worktables created for the merge join. When aworktableis required for a
merge join, it is sorted into order on the join key, then the merge step is
performed. The costing for any merge joins that involve sorting includes
the estimated 1/O cost of creating and sorting a worktable. For full-merge
joins, the only cost involved is scanning the tables.

Figure 21-2 provides diagrams of the merge join types.

479

Access methods and costing for sort-merge joins

Figure 21-2: Merge join types

Full-merge join (FMJ) Step 1

SN
e C

Left-merge join (LMJ) Step 1 Step 2

sort

Worktablel

Right-merge join (RMJ) Step 1 Step 2

Worktablel
sort

<Worktable1

Sort-merge join (SMJ) Step 1 Step 2 Step 3

Worktablel Worktable2
\ sort sort
<T2) @orktablel) <Worktable2>

480

CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries

How a full-merge is performed

If both Table1 and Table2 have indexes on the join key, this query can use
afull-mergejoin:

sel ect *
from Tabl el, Table2
where Tabl el.cl = Tabl e2.c2
and Tabl el.cl between 100 and 120

If both tables are all pages-locked tables with clustered indexes, and Table1
is chosen asthe outer table, theindex is used to position the search on the
data page at the row where the value equals 100. Theindex on Table2 is
also used to position the scan at the first row in Table2 where the join
column equals 100. From this point, rows from both tables are returned as
the scan moves forward on the data pages.

Figure 21-3: A serial merge scan on two tables with clustered

indexes
Tablel Table2
Page 1037 Page 3423
93
98
100
99
102
100
105
101
102 113
122
Page 1040
105
109
113
17|y
122

Merge joins can also be performed using nonclustered indexes. Theindex
is used to position the scan on the first matching value on the leaf page of
theindex. For each matching row, theindex pointersare used to accessthe
data pages. Figure 21-4 shows a full-merge scan using a nonclustered
index on the inner table.

481

Access methods and costing for sort-merge joins

Figure 21-4: Full merge scan using a nonclustered index on the

inner table
Page 1037
98
99 Page 1903
100 57
101 623
102 100
Page 3423
Page 1040 93 [1955,1 Page 1907
105 100 [19033 105
109 102 |1752.2 842
113 105 |1907,1 113
ur| 'y 113 |17523 412
122 122 | 24094
Page 1752
102
823
113
29
Data pages Leaf page Data pages

How aright-merge or left-merge is performed

A right-merge or left-merge join always operates on a user table and a
worktable created for the merge join. There are two steps:

1 A tableor set of tablesis scanned, and the results are inserted into a
worktable.

2 Theworktableis sorted and then merged with the other tablein the
join, using the index.

482

CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries

How a sort-merge is performed

Mixed example

For a sort-merge join, there are three steps, since the inputs to the sort-
merge joins are both sorted worktables:

1 Atableor set of tablesis scanned and the results are inserted into one
worktable. Thiswill be the outer table in the merge.

2 Another table is scanned and the results are inserted into another
worktable. Thiswill be the inner table in the merge.

3 Each of the worktables is sorted, then the two sorted result sets are
merged.

This query performs a mixture of merge and nested-loop joins:

sel ect pub_nane, au_l nane, price
fromtitles t, authors a, titleauthor ta,
publ i shers p

where t.title id = ta.title_id

and a.au_id = ta.au_id

and p.pub_id = t.pub_id

and type = ’busi ness’

and price < $25

Adaptive Server executes this query in three steps:

» Step 1 uses 3 worker processes to scan titles as the outer table,
performing afull-merge join with titleauthor and then a nested-loop
join with authors. No sorting is required for the full-merge join. titles
has a clustered index on title_id. The index on titleauthor, ta_ix,
contains thetitle_id and au_id, so the index coversthe query. The
results are stored in Worktablel, for use in the sort-merge join
performed in Step 3.

» Step 2 scansthe publishers table, and saves the needed columns
(pub_name and pub_id) in Worktable2.

* InSep3:
* Worktablel is sorted into join column order, on pub_id.
* Worktable2 is sorted into order on pub_id.

» The sorted results are merged.

483

Access methods and costing for sort-merge joins

Figure 21-5 shows the steps.

Figure 21-5: Multiple steps in processing a merge join

Step 1 Worktablel Step 2 Worktable2

@ publishers

titleauthor

Step 3
sort sort

Worktablel Worktable2

showplan messages for sort-merge joins
showplan messages for each type of merge join appear as specific
combinations:

e Full-mergejoin—thereareno“FROM TABLE Worktable” messages,
only the“inner table” and “ outer table” messagesfor basetablesinthe
query.

e Right-mergejoin—the “outer table” is always aworktable.

484

CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries

Left-merge join —the “inner table” is always a worktable.

Sort-merge join — both tables are worktables.

For more information, see “Messages describing access methods,
caching, and /O cost” on page 793.

Costing for merge joins

Thetotal cost for merge joins depends on:

The type of mergejoin.
» Full-merge joins do not require sorts and worktables.

» For right-merge and left-merge joins, one side of the join is
selected into aworktable, then sorted.

» For sort-merge joins, both sides of the join are selected into
worktables, and each worktable is sorted.

Thetype of index used to scan the tables while performing the merge
step.

Thelocking scheme of the underlying table: costing models for most
scans are different for allpages locking than data-only locking.
Clustered index access cost on data-only-locked tablesis more
comparable to nonclustered access.

Whether the query is executed in serial or parallel mode.
Whether the outer table has duplicate values for the join key.

In general, when comparing costs between a nested-loop join and amerge
join for the sametables, using the sameindexes, the cost for the outer table
remains the same. Accessto the inner table costs less for amerge join
because the scan remains positioned on the leaf pages as matching values
arereturned, saving thelogical 1/0 cost of scanning down the index from
the root page each time.

485

Access methods and costing for sort-merge joins

Costing for a full-merge with unique values

If afull-mergejoinisperformed in serial mode and thereisno need to sort
the tables, the cost of amergejoin on T1 and T2 isthe sum of the cost of
the scans of both tables, aslong as al join values are unique;

Merge join cost = Cost of scan of T1 + Cost of scan of T2

The cost saving of amerge join over anested-loop joinis:

» For anested-loop join, accessto theinner table of thejoin starts at the
root page of the index for each row from the outer table that qualifies.

e For afull-mergejain, the upper levels of the index are used for the
first access, to position the scan:

e Ontheleaf page of theindex, for nonclustered indexes and
clustered indexes on data-only-locked tables

e Onthedatapage, if thereisaclustered index on an allpages-
locked table

The higher levels of the index do not need to be read for each
matching outer row.

Example: allpages-locked tables with clustered indexes

486

For allpages-locked tables where clustered indexes are used to perform the
scans, the search arguments on the index are used to position the search on
the first matching row of each table. Thetotal cost of the query is the cost
of scanning forward on the data pages of each table. For example, with
clustered indexes on t1(c1) and t2(c1), the query on two allpages-locked
tables can use afull-merge join:

select tl1l.c2, t2.c2

fromtl, t2

where tl.cl =t2.cl

and t1.cl >= 1000 and tl1l.cl < 1100

If there are 100 rows that qualify from t1, and 100 rows from t2, and each
of these tables has 10 rows per page, and anindex height of 3, the costsare:

e 3index pagesto position the scan on the first matching row of t1

e Scanning 10 pages of t1

CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries

¢ 3index pagesto position the scan on the first matching row of t2

e Scanning 10 pages of t2

Costing for a full-merge with duplicate values

If the outer tablein amerge join has duplicate values, the inner table must
be accessed from the root page of the index for each duplicate value. This
guery isthe same as the previous example:

select t1.c2, t2.c2

fromtl, t2

where tl.cl =t2.cl

and t1.c1 >= 1000 and tl1l.cl < 1100

If t1 isthe outer table, and there are duplicate values for some of the rows
int1, so that there are 120 rows between 1000 and 1100,with 20 duplicate
values, then each time one of the duplicate valuesis accessed, the scan of
t2 isrestarted from the root page of the index. If one row for t2 matches
each value from t1, the I/O costs for this query are:

¢ 3index pagesto position on the first matching row of t1
e Scanning 12 pages of t1

¢ 3index pagesto position on the first matching row of t2, plusan I/O
to read the data page

¢ For theremaining rows:

e Ifthevaluefromtl isaduplicate, the scan of t2 restarts from the
root page of the index.

e For all valuesof t1 that are not duplicates, the scan remains
positioned on the leaf level of t2. The scan on the inner table
remains positioned on the leaf page asrows are returned until the
next duplicate value in the outer table requires the scan to restart
from the root page.

Thisformula gives the cost of the scan of the inner table for amerge join:

Cost of scan of inner = Num duplicate values * (index height + scan size)
+ Num unique values * scan size

487

Access methods and costing for sort-merge joins

Costing sorts

The scan sizeisthe number of pages of the inner table that need to be read
for each value in the outer table. For tables where multiple inner rows
match, the scan size is the average number of pages that need to be read
for each outer row.

Sort cost during sort-merge joins depends on:

» Thesize of the worktables, which depends on the number of columns
and rows selected

e The setting for the number of sort buffers configuration parameter,
which determines how many pages of the cache can be used

These variables affect the number of merge runs required to sort the
worktable.

Worktable size for sort-merge joins

488

When aworktableis created for amerge join that requires a sort, only the
columns that are needed for the result set and for later joins in the query
execution are selected into theworktable. When theworktablefor thetitles
tableis created for the join shown in Figure 21-5 on page 484:

« Worktablel includesthe price and authors.state, because they are part
of theresult set, and pub_id, becauseit is needed for a subsequent join.

« Worktable2 includes the publishers.state column because it is part of
the result set, and the pub_id, because it is needed for the merge step.

The type column is used as a search argument while the rows from titles
are selected, but sinceit isnot used later in the query or in the result set, it
is not included in the worktable.

Each sort performed for a merge join can use up to number of sort buffers
for intermediate sort steps. Sort buffers for worktabl e sorts are allocated
from the cache used by tempdb. If the number of pagesto be sorted isless
the number of sort buffers, then the number of buffers reserved for the sort
is the number of pages in the worktable.

CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries

When merge joins cannot be used
Merge joins are not used:

For joinsusing <, >, <=, >=, or != on the join columns.
For outer joins, that is, queries using *= or =*, and left join and right join.

For queriesthat include atext or image column or Javaobject columns
in the select list or in awhere clause.

For subqueries that are not flattened or materialized in parallel
queries.

For multitable updates and del etes, such as:

update Rset a =5
fromR S, T
where ...

For joinsto perform referential integrity checksfor insert, update, and
delete commands. These joins are generated internally to check for
the existence of the column values. They usually involve joins that
return asingle value from the referenced table. Often, these joins are
supported by indexes. There would be no benefit from using amerge
join for constraint checks.

When the number of bytesin arow for aworktable would exceed the
page-size limit (1960 bytes of user data) or the limit on the number of
columns (1024). If the select list and required join columnsfor ajoin
would create a worktable that exceeds either of these limits, the
optimizer does not consider performing amerge join at that point in
the query plan.

When the use of worktablesfor amerge join would require more than
the maximum allowable number of worktables for a query (14).

There are some limits on where merge joins can be used in the join order:

Merge joins can be performed only before an existence join. Some
distinct queries areturned into existence joins, and merge joins are not
used for these.

Full-merge joins and | eft-merge joins can be performed only on the
outermost tablesin the join order.

489

Access methods and costing for sort-merge joins

Use of worker processes

When parallel processing is enabled, merge joins can use multiple worker
processes to perform:

* Thescan that selects rows into the worktables
e Worktable sort operations
e Themergejoin and subsequent joins in the step

See “Parallel range-based scans’ on page 546 for more information.

Recommendations for improved merge performance

490

Here are some suggestions for improving sort-merge join performance:

* Toreducethesize of worktables select only needed columnsfor tables
used in merge joins. Avoid using select * unless you need al columns
of the tables. This reduces the load on tempdb and the cost of sorting
the result tables.

» If you are concerned about possible performance impacts of merge
joins or possible space problemsin tempdb, see Chapter 28,
“Introduction to Abstract Plans,” for a discussion of how abstract
query plans can help determine which queries on your system use
merge joins.

* Look for opportunities for index covering. One example is queries
where joins are in the form:

select t1.¢c3, t3.c4

fromtl, t2, t3

wehre tl.cl =t2.cl1 and t2.¢c2 =t3.c2
and ...

and columnsfrom t2 are not inthe select list, or only thejoin columns
arein the select list. An index on the join columns, t2(c1, c2) covers
the query, allowing amergejoin to avoid accessing the data pages of
t2.

« Mergejoinscan useindexes created in ascending or descending order
when two tables are joined on multiple columns, such as these:

A.cl = B.cl and A c2 = B.c2 and A.¢c3 = B.c3

CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries

The column order specified for the indexes must be an exact match,
or exactly thereverse, for all columns to be used asjoin predicates
when costing the join and accessing the data. If there isamismatch of
ordering in second or subsequent columns, only the matching
columns are used for the join, and the remaining columns are used to
restrict the results after the row has been retrieved. This table shows
some examples for the query above:

Index creation order

Clauses used as join
predicates

A(cl asc, c2 asc, €3 asc)
B(cl asc, c2 asc, ¢3 asc)

All three clauses.

A(cl asc, c2 asc, €3 asc)
B(cl desc, c2 desc, ¢3 desc)

All three clauses.

A(cl asc, c2 asc, €3 asc)
B(cl desc, c2 desc, €3 asc)

Thefirst two join clauses are used as
join predicates and the third clauseis
evaluated as arestriction on the
result.

A1(cl asc, c2 desc, €3 desc)
B1(c1 desc, c2 desc, c3 asc)

Only thefirst join clauseisused asa
join predicate. The remaining two
clausesisevaluated asrestrictionson
theresult set.

Index key orderingisgenerally chosen to eliminate sort costsfor order
by queries. Using compatible ordering for frequently joined tables can

also reduce join costs.

Enabling and disabling merge joins

You can enable and disable merge joins at the server and session level
using set sort_merge, or at the server level with the configuration
parameter enable sort-merge joins and JTC. This configuration parameter
also enables and disables join transitive closure.

491

Reformatting strategy

At the server level

At the session level

To enable merge joins server-wide, set enable sort-merge joins and JTC to
1. The default valueis 0, which meansthat mergejoinsare not considered.
When thisvalue is set to 1, merge joins and join transitive closure are
considered for equijoins. If merge joins are disabled at the server level,
they can be enabled for a session with set sort_merge.

Join transitive closure can be enabled independently at the session level
with set jtc on.

See “Enabling and disabling join transitive closure’ on page 418.

The configuration parameter is dynamic, and can be reset without
restarting the server.

To enable merge joins for a session, use:
set sort_nerge on

To disable merge joins during a session, use:
set sort_nerge off

The session setting has precedence over the server-wide setting; you can
use mergejoinsin a session or stored procedure even if they are disabled
at the server-wide level.

Reformatting strategy

492

When atable islarge and has no useful index for ajoin, the optimizer
considers a sort merge join, and also considers creating and sorting a
worktable, and using a nested-loop join.

The process of generating a worktable with a clustered index and
performing a nested-loop join is known as reformatting.

CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries

Like asort-mergejoin, reformatting scans the tables and copies qualifying
rows to aworktable. But instead of the sort and merge used for amerge
join, Adaptive Server creates atemporary clustered index on the join
column for theinner table. In some cases, creating and using the clustered
index is cheaper than a sort-mergejain.

The stepsin the reformatting strategy are:

¢ Creating aworktable

¢ Inserting the needed columns from the qualifying rows

¢ Creating aclustered index on the join columns of the worktable

e Usingthe clustered index in the join to retrieve the qualifying rows
from each table

The main cost of the reformatting strategy isthetime and I/O necessary to
create the worktable and to build the clustered index on the worktable.
Adaptive Server uses reformatting only when the reformatting cost isless
than the cost of a merge join or repeated table scans.

A showplan message indicates when Adaptive Server is using the
reformatting strategy and includes other messages showing the steps used
to build the worktabl es.

See “Reformatting Message” on page 809.

Subquery optimization
Subqueries use the following optimizations to improve performance:
» Flattening — converting the subquery to ajoin
» Materializing — storing the subquery results in aworktable
» Short circuiting — placing the subquery last in the execution order
» Caching subquery results — recording the results of executions
The following sections explain these strategies.

See “ showplan messages for subqueries’ on page 819 for an explanation
of the showplan messages for subquery processing.

493

Subquery optimization

Flattening in, any, and exists subqueries

Adaptive Server can flatten some quantified predicate subqueriestoajoin.
Quantified predicate subqueries areintroduced within, any, or exists. Each
result row in the outer query is returned once, and only once, if the
subquery condition evaluatesto TRUE.

When flattening can be done
e For any level of nesting of subqueries, for example:

sel ect au_l nane, au_fnane
from aut hors
where au_id in
(select au_id
fromtitleauthor
where title_id in
(select title_id
fromtitles
where type = "popul ar_conmp"))

e For multiple subqueries in the outer query, for example:

select title, type

fromtitles

where title in
(select title
fromtitles, titleauthor, authors
where titles.title id =titleauthor.title_ id
and titleauthor.au id = authors.au_id
and authors.state = "CA")

and title in
(select title
fromtitles, publishers
where titles.pub_id = publishers.pub_id
and publishers.state = "CA")

Exceptions to flattening

A subqguery introduced with in, any, or exists cannot be flattened if one of
the following istrue:

e Thesubquery is correlated and contains one or more aggregates.

e Thesubquery isinthe select list or in the set clause of an update
statement.

494

CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries

e The subquery is connected to the outer query with or.
e Thesubquery is part of anisnull predicate.
e Thesubquery isthe outermost subquery in acase expression.

If the subquery computes a scalar aggregate, materialization rather than
flattening is used.

See “Materializing subquery results’ on page 499.

Flattening methods

Adaptive Server uses one of these flattening methods to resolve a
quantified predicate subquery using ajoin:

* Aregular join —if the uniqueness conditions in the subquery mean
that it returns a unique set of values, the subquery can be flattened to
use aregular join.

* Anexistencejoin, also known as a semi-join —instead of scanning a
table to return all matching values, an existence join returns TRUE
when it findsthe first matching value and then stops processing. If no
matching value is found, it returns FAL SE.

* A unique reformat — the subquery result set is selected into a
worktable, sorted to remove duplicates, and a clustered index is built
on the worktable. The clustered index is used to perform aregular
join.

* A duplicate elimination sort optimization — the subquery is flattened
into aregular join that selects the results into aworktable, then the
worktable is sorted to remove duplicate rows

Join order and flattening methods

A major factor in the choice of flattening method depends on the cost of
the possible join orders. For example, in ajoin of t1, t2, and t3:

select * fromtl, t2
where tl.cl =t2.cl
and t2.c2 in (select ¢c3 fromt3)

If the cheapest join order istl, t2, t3 or t2, t1, t3, aregular joinor or an
existencejoin isused. However, if it is cheaper to perform thejoin with t3
asthe outer table, say, t3, t1, t2, aunique reformat or duplicate elimination
sort is used.

495

Subquery optimization

The resulting flattened join can include nested-loop joins or merge joins.
When an existence join is used, mergejoins can be performed only before
the existence join.

Flattened subqueries executed as regular joins

Quantified predicate subqueries can be executed as normal joins when the
result set of the subquery isaset of unique values. For example, if thereis
aunigue index on publishers.pub_id, this single-table subquery is
guaranteed to return a set of unique values:

select title

fromtitles

where pub_id in (select pub_id
from publishers
where state = "TX")

With anonunique index on publishers.city, this query can also be executed
using aregular join:

sel ect au_l nane
fromauthors a
where exists (select city
from publishers p where p.city = a.city)

Although the index on publishers.city is hot unique, the join can still be
flattened to anormal join if theindex is used to filter duplicate rows from
the query.

When a subquery is flattened to a normal join, showplan output shows a
normal join. If filtering is used, showplan output is not different; the only
diagnostic message isin dbcc traceon(310) output, where the method for
the table indicates “NESTED ITERATION with Tuple Filtering.”

Flattened subqueries executed as existence joins

Allin, any, and exists queriestest for the existence of qualifying valuesand
return TRUE as soon as a matching row is found.

The optimizer converts the following subquery to an existencejoin:

select title
fromtitles
where title id in
(select title_id
fromtitleauthor)
and title like "A Tutorial %

496

CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries

The existence join query looks like the following ordinary join, although
it does not return the same results:

select title
fromtitles T, titleauthor TA
where T.title id = TA title_id
and title like "A Tutorial %

In the pubtune database, two books match the search string on title. Each
book has multiple authors, soit has multiple entriesin titleauthor. A regular
joinreturnsfiverows, but the subquery returnsonly two rows, onefor each
title_id, since it stops execution of the join at the first matching row.

When subqueries are flattened to use existence joins, the showplan output
shows output for ajoin, with the message “EXISTS TABLE: nested
iteration” asthejoin type for the table in the subquery.

Flattened subgueries executed using unique reformatting
To perform unique reformatting, Adaptive Server:

» Selectsrowsinto aworktable and sorts the worktable, removing
duplicates and creating a clustered index on the join key.

» Joinsthe worktable with the next table in the join order. If thereisa
nonunique index on publishers.pub_id, this query can use a unique
reformat strategy:

select title_id

fromtitles

where pub_id in

(select pub_id from publishers where state =
"TX")

This query is executed as.

select pub_id

i nto #publishers
from publishers
where state = "TX"

And after the sort removes duplicates and creates the clustered index:

select title id
fromtitles, #publishers
where titles. pub_id = #publishers.pub_id

497

Subquery optimization

showplan messages for unique reformatting show “Worktable created for
REFORMATTING” in Step 1, and “Using Clustered Index” on the
worktable in Step 2.

dbcc traceon(310) displays “REFORMATTING with Unique
Reformatting” for the method for the publishers table.

Flattened subqueries using duplicate elimination

498

When it is cheaper to place the subquery tables as outer tablesin the join
order, the query is executed by:

» Performing aregular join with the subquery flattened into the outer
query, placing resultsin aworktable.

e Sorting the worktable to remove duplicates.

For example, salesdetail has duplicate valuesfor title_id, and it isused in
this subquery:

select title id, au_id, au_ord

fromtitleauthor ta

where title_id in (select ta.title_id
fromtitles t, salesdetail sd
where t.title_id = sd.title_id
and ta.title_id =t.title_id
and type = "travel’ and qty > 10)

If the best join order for this query is salesdetall, titles, titleauthor, the
optimal join order can be used by:

e Sdlecting all of the query resultsinto aworktable

« Removing the duplicates from the worktable and returning the results
to the user

showplan Messages for Flattened Subqueries Performing Sorts

showplan output includes two steps for subqueries that use normal joins
plus asort. Thefirst step shows“Worktablel created for DISTINCT” and
the flattened join. The second step shows the sort and select from the
worktable.

dbcc traceon(310) prints amessage for each join permutation when atable
or tables from a quantified predicate subquery is placed first in the join
order. Here is the output when the join order used for the query aboveis
considered:

2-0-1-

CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries

This join order created while converting an exists
join to a regular join, which can happen for
subqueries, referential integrity, and select

di stinct.

Flattening expression subqueries

Expression subqueries areincluded in a query’s select list or that are
introduced by >, >=, <, <=, =, or I=. Adaptive Server converts, or flattens,
expression subqueries to equijoinsif:

» Thesubquery joinson unique columnsor returnsunique columns, and

» Thereisauniqueindex on the columns.

Materializing subquery results

In some cases, a subquery is processed in two steps: the results from the
inner query are materialized, or stored in atemporary worktableor internal
variable, before the outer query is executed. The subquery is executed in
one step, and the results of this execution are stored and then used in a
second step. Adaptive Server materializes these types of subqueries:

» Noncorrelated expression subqueries

* Quantified predicate subqueries containing aggregates where the
having clause includes the correlation condition

Noncorrelated expression subqueries

Noncorrelated expression subqueries must return a single value. When a
subquery isnot correlated, it returns the same value, regardless of the row
being processed in the outer query. The query is executed by:

e Executing the subquery and storing the result in an internal variable.
e Substituting the result value for the subquery in the outer query.
The following query contains a noncorrelated expression subquery:

select title_id
fromtitles
where total _sales = (select max(total _sales)

499

Subquery optimization

fromts_tenp)
Adaptive Server transforms the query to:

sel ect <internal _variable> = max(total _sal es)
fromts_tenp

select title_ id
fromtitles
where total _sales = <internal _vari abl e>

The search clausein the second step of this transformation can be
optimized. If thereisanindex ontotal_sales, the query can useit. Thetotal
cost of amaterialized expression subquery isthe sum of the cost of thetwo
separate queries.

Quantified predicate subqueries containing aggregates

500

Some subqueries that contain vector (grouped) aggregates can be
materialized. These are:

* Noncorrelated quantified predicate subqueries

» Correlated quantified predicate subqueries correlated only in the
having clause

The materialization of the subquery results in these two steps:

e Adaptive Server executesthe subquery first and storestheresultsin a
worktable.

e Adaptive Server joinsthe outer table to the worktable as an existence
join. In most cases, thisjoin cannot be optimized because statisticsfor
the worktable are not available.

Materialization saves the cost of evaluating the aggregates once for each
row in the table. For example, this query:

select title_ id

fromtitles

where total _sales in (select nax(total _sales)
fromtitles

group by type)
Executesin these steps:

sel ect maxsal es = nmax(total _sal es)
into #work
fromtitles
group by type

select title_id

CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries

fromtitles, #work
where total _sal es = naxsal es

Thetota cost of executing quantified predicate subqueriesis the sum of
the query costs for the two steps.

When there are where clauses in addition to a subquery, Adaptive Server
executes the subquery or subqueries last to avoid unnecessary executions
of the subqueries. Depending on the clausesin the query, it is often
possible to avoid executing the subquery because less expensive clauses
can determine whether the row is to be returned:

» If any and clauses evaluate to FAL SE, the row will not be returned.
» If any or clauses evaluate to TRUE, the row will be returned.

In both cases, as soon as the status of the row is determined by the
evaluation of one clause, no other clauses need to be applied to that row.
This provides a performance improvement, because expensive subqueries
need to be executed less often.

Subquery introduced with an and clause

When and joins the clauses, eval uation stops as soon as any clause
evaluatesto FALSE. Therow is skipped.

This query contains two and clauses, in addition to the correlated
subquery:

sel ect au_fnanme, au_lnane, title, royaltyper
fromtitles t, authors a, titleauthor ta
where t.title_id = ta.title_id
and a.au_id = ta.au_id
and advance >= (sel ect avg(advance)
fromtitles t2
where t2.type = t.type)
and price > $100
and au_ord =1

Adaptive Server orders the execution steps to eval uate the subquery last,
after it evaluatesthe conditions on price and au_ord. If arow does not meet
an and condition, Adaptive Server discards the row without checking any
more and conditions and begins to evaluate the next row, so the subquery
is not processed unless the row meets al of the and conditions.

501

Subquery optimization

Subquery introduced with an or clause

If aquery’swhere conditions are connected by or, evaluation stops when
any clause evaluates to TRUE, and the row is returned.

This query contains two or clauses in addition to the subquery:

sel ect au_fnane, au_l nane, title
fromtitles t, authors a, titleauthor ta
where t.title_id = ta.title_id
and a.au_id =ta.au id
and (advance > (select avg(advance)
fromtitles t2
where t.type = t2.type)
or title = "Best laid plans"
or price > $100)

Adaptive Server orders the conditions in the query plan to evaluate the
subquery last. If arow meets the condition of the or clause, Adaptive
Server returns the row without executing the subguery, and proceeds to
evaluate the next row.

Subquery results caching

When it cannot flatten or materialize a subquery, Adaptive Server uses an
in-memory cache to store the results of each evaluation of the subquery.
While the query runs, Adaptive Server tracks the number of times a
needed subquery result isfound in cache. Thisis called acachehit ratio.
If the cache hit ratiois high, it meansthat the cacheis reducing the number
of timesthat the subquery executes. If the cache hit ratio islow, the cache
isnot useful, and it isreduced in size as the query runs.

Caching the subquery results improves performance when there are
duplicate valuesin the join columns or the correlation columns. It is even
more effective when the values are ordered, as in a query that uses an
index. Caching does not help performance when there are no duplicate
correlation values.

Displaying subquery cache information

502

Theset statistics subquerycache on command displaysthe number of cache
hits and mi sses and the number of rowsin the cachefor each subquery. The
following example shows subquery cache statistics:

set statistics subquerycache on

CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries

select type, title_id
fromtitles
where price > all
(select price

fromtitles

where advance < 15000)
Statenent: 1 Subquery: 1 cache size: 75 hits: 4925
m sses: 75

If the statement includes subgueries on either side of a union, the
subqueries are numbered sequentially through both sides of the union.

Optimizing subqueries

When queries containing subgueries are not flattened or materialized:

The outer query and each unflattened subquery are optimized oneat a
time.

The innermost subqueries (the most deeply nested) are optimized
first.

The estimated buffer cache usage for each subquery is propagated
outward to help evaluate the 1/O cost and strategy of the outer queries.

In many queries that contain subqueries, a subquery is “nested over” to
one of theouter tabl e scans by atwo-step process. First, the optimizer finds
the point in the join order where all the correlation columns are available.
Then, the optimizer searches from that point to find the table access that
qualifies the fewest rows and attaches the subquery to that table. The
subquery isthen executed for each qualifying row from thetableitis
nested over.

503

or Clauses versus unions in joins

or Clauses versus unions in joins

504

Adaptive Server cannot optimizejoin clausesthat are linked with or and it
may perform Cartesian products to process the query.

Note Adaptive Server optimizes search argumentsthat are linked with or.
This description applies only to join clauses.

For example, when Adaptive Server processes this query, it must look at
every row in one of the tables for each row in the other table:

sel ect *
fromtabl, tab2
where tabl.a = tab2.b
or tabl.x = tab2.y

If you use union, each side of the union is optimized separately:

sel ect *
fromtabl, tab2
where tabl.a = tab2.b
uni on all
sel ect *
fromtabl, tab2
where tabl.x = tab2.y

You can use union instead of union all to eliminate duplicates, but this
eliminates all duplicates. You may not get exactly the same set of
duplicates from the rewritten query.

Adaptive Server can optimize selectswith joinsthat are linked with union.
Theresult of or is somewhat like the result of union, except for the
treatment of duplicate rows and empty tables:

e union removes all duplicate rows (in a sort step); union all does not
remove any duplicates. The comparable query using or might return
some duplicates.

e A joinwith an empty table returns no rows.

CHAPTER 22

Parallel Query Processing

This chapter introduces basic concepts and terminol ogy needed for
parallel query optimization, parallel sorting, and other parallel query
topics, and provides an overview of the commands for working with

parallel queries.

Topic Page
Types of queries that can benefit from parallel processing 506
Adaptive Server'sworker process model 507
Types of parallel data access 511
Controlling the degree of parallelism 516
Commands for working with partitioned tables 522
Balancing resources and performance 525
Guiddines for parallel query configuration 526
System level impacts 531
When parallel query results can differ 533

Other chaptersthat cover specific parallel processing topicsin more depth

include:

» For details on how the Adaptive Server optimizer determines
eligibility and costing for parallel execution, see Chapter 23,

“Parallel Query Optimization.”

* Tounderstand parallel sorting topics, see Chapter 24, “Parallel

Sorting.”

» For information on object placement for parallel performance, see

“Partitioning tables for performance” on page 85.

For information about locking behavior during parallel query
processing, see System Administration Guide

For information on showplan messages, see “ showplan messages for
parallel queries’ on page 814.

To understand how Adaptive Server uses multiple engines, see
Chapter 3, “Using Engines and CPUSs.”

505

Types of queries that can benefit from parallel processing

Types of queries that can benefit from parallel

processing

506

When Adaptive Server is configured for parallel query processing, the
optimizer evaluates each query to determine whether it is eligible for
parallel execution. If it isdigible, and if the optimizer determines that a
parallel query plan can deliver results faster than aserial plan, the query is
divided into componentsthat are processed simultaneoudly. Theresultsare
combined and delivered to the client in a shorter period of time than it
would take to process the query serially as a single component.

Parallel query processing can improve the performance of the following
types of queries:

select statements that scan large numbers of pages but return
relatively few rows, such as:

» Tablescansor clustered index scans with grouped or ungrouped
aggregates
e Tablescansor clustered index scans that scan alarge number of

pages, but have where clausesthat return only asmall percentage
of therows

select statements that include union, order by, or distinct, since these
queries can populate worktablesin parallel, and can make use of
parallel sorting

select statements that use merge joins can use parallel processing for
scanning tables and for performing the sort and merge steps

select statements where the reformatting strategy is chosen by the
optimizer, since these can popul ate worktables in parallel, and can
make use of parallel sorting

create index statements, and the alter table...add constraint clauses that
create indexes, unique and primary key

The dbcc checkstorage command

Join queries can use parallel processing on one or more tables.

Commands that return large, unsorted result sets are unlikely to benefit
from parallel processing due to network constraints—in most cases,
results can be returned from the database faster than they can be merged
and returned to the client over the network.

CHAPTER 22 Parallel Query Processing

Commandsthat modify data(insert, update, and delete), and cursors do not
runin parallel. The inner, nested blocks of queries containing subqueries
are never executed in parallel, but the outer block can be executed in
parallel.

Decision support system (DSS) queries that access huge tables and return
summary information benefit the most from parallel query processing. The
overhead of allocating and managing parallel queries makes parallel
execution less effective for online transaction processing (OLTP) queries,
which generally accessfewer rowsand join fewer tables. When aserver is
configured for parallel processing, only queries that access 20 data pages
or more are considered for parallel processing, so most OLTP queriesrun
in serial.

Adaptive Server’'s worker process model

Adaptive Server uses a coor dinating process and multiple worker
processesto execute queriesin parallel. A query that runsin parallel with
eight worker processesis much like eight serial queries accessing one-
eighth of the table, with the coordinating process supervising the
interaction and managing the process of returning results to the client.
Each worker process uses approximately the same amount of memory as
auser connection. Each worker process runs as atask that must be
scheduled on an engine, scans data pages, queues disk 1/0Os, and performs
inmany wayslike any other task on the server. Onemajor differenceisthat
in last phase of query processing, the coordinating process manages
merging the results and returning them to the client, coordinating with
worker processes.

Figure 22-1 shows the events that take place during parallel query
processing:

1 Theclient submitsaquery.

2 Theclient task assigned to execute the query becomes the
coordinating process for parallel query execution.

3 The coordinating process requests four worker processes from the
pool of worker processes. The coordinating process together with the
worker processesis called afamily.

4 Theworker processes execute the query in parallel.

507

Adaptive Server’'s worker process model

5 The coordinating process returns the results produced by all the
worker processes.

The seria client shown inthe lower-right corner of Figure 22-1 submitsa
query that is processed serially.

Figure 22-1: Worker process model

/ — d(,iptﬂi\',e'Server pi

Pool of worker processes

1. Parallel client
4. Worker processe&
scan the table in/ |

@ Query parallel

T o AAAA/
/. / Serial client
5. Results returned iTaskil L
S Query

During query processing, the tasks are tracked in the system tables by a

family ID (fid). Each worker process for afamily has the same family ID
and its own unique server process ID (spid). System procedures such as

sp_who and sp_lock display both the fid and the spid for parallel queries,

allowing you to observe the behavior of all processesin afamily.

508

CHAPTER 22 Parallel Query Processing

Parallel query execution

Figure 22-2 shows how parallel query processing reduces response time
over the same query running in serial. In parallel execution, three worker
processes scan the data pages. The times required by each worker process
may vary, depending on the amount of data that each process needsto
access. Also, ascan can betemporarily blocked dueto locks on data pages
held by other users. When all of the data has been read, the results from
each worker process are merged into asingle result set by the coordinating
process and returned to the client.

Figure 22-2: Relative execution times for serial and parallel query

execution
Parse, Data access Return
optimize, results
compile
> < L e e
Serial execution
of a group by query
Sttt
Coordinating process _
Parallel Work time
execution of the OrKer process
same quiery with Worker process
3 worker
processes - Worker process
{4 > <L>

Parse, Dataaccess Merge and
optimize, return results

compile

Thetotal amount of work performed by the query running in paralld is
greater than the amount of work performed by the query running in serial,
but the response time is shorter.

509

Adaptive Server’'s worker process model

Returning results from parallel queries

510

Results from parallel queries are returned through one of three merge
strategies, or asthefinal step in asort. Parallel queries that do not have a
final sort step use one of these merge types:

e Queriesthat contain avector (grouped) aggregate use worktablesto
store temporary results; the coordinating process merges the results
into one worktable and returns results to the client.

e Queriesthat contain a scalar (ungrouped) aggregate use internal
variables, and the coordinating process performs the final
computations to return the results to the client.

e Queriesthat do not contain aggregates and that do not use clausesthat
do not require afinal sort can return results to the client as the tables
are being scanned. Each worker process stores resultsin aresult
buffer and uses address locks to coordinate transferring the results to
the network buffers for the task.

More than one merge type can be used when queries require several steps
or multiple worktables.

See “showplan messages for parallel queries’ on page 814 for more
information on merge messages.

For parallel queries that include an order by clause, distinct, or union,
results are stored in aworktable in tempdb, then sorted. If the sort can
benefit from parallel sorting, aparallel sortisused, and resultsarereturned
to the client during the final merge step performed by the sort.

For moreinformation on how parallel sortsare performed, see Chapter 24,
“Parallel Sorting.”

Note Since parallel queries use multiple processes to scan data pages,
gueriesthat do not use aggregates and do not include afinal sort step may
return resultsin different order than serial queriesand may return different
results for queries with set rowcount in effect and for queries that select
into alocal variable.

For details and solutions, see “When parallel query results can differ” on
page 533.

CHAPTER 22 Parallel Query Processing

Types of parallel data access

Adaptive Server accesses datain parallel in different ways, depending
configuration parameter settings, table partitioning, and the availability of
indexes. The optimizer may choose amix of serial and parallel methods
for queriesthat involve multipletables or multiple steps. Parallel methods
include:

» Hash-based table scans
» Hash-based nonclustered index scans

» Partition-based scans, either full table scans or scans positioned with
aclustered index

» Range-based scans during merge joins
The following sections describe some of the methods.
For more examples, see Chapter 23, “Parallel Query Optimization.”

Figure 22-3 showsascan on an all pages-locked table executed in seria by
asingle task. The task follows the table's page chain to read each page,
stopping to perform physical 1/0 when needed pages are not in the cache.

Figure 22-3: A serial task scans data pages

Single page chain

/X D

C

\/

511

Types of parallel data access

Hash-based table scans

WP2

512

Figure 22-4 shows how three worker processes divide the work of
accessing data pages from an all pages-locked table during a hash-based
table scan. Each worker process performsalogical |/0 on every page, but
each process examines rows on only one-third of the pages, as indicated
by the differently shaded pages. Hash-based table scans are used only for
the outer query inajoin.

With only one engine, the query still benefits from parallel access because
one worker process can execute while others wait for 1/0O. If there are
multiple engines, some of the worker processes could be running
simultaneously.

Figure 22-4: Worker processes scan an unpartitioned table

PN

Single Page Chain

WP3

Multiple worker processes

Hash-based table scans increase the logical 1/O for the scan, since each
worker process must access each page to hash on the page ID. For data
only-locked tables, hash-based table scans hash either on the extent ID or
the allocation page ID, so that only a single worker process scans a page,
and logical 1/0 does not increase.

CHAPTER 22 Parallel Query Processing

Partition-based scans

Figure 22-5 shows how a query scans a table that has three partitions on
three physical disks. With a single engine, this query can benefit from
parallel processing because one worker process can execute while others
sleep waiting for 1/O or waiting for locks held by other processes to be
released. If multiple engines are available, the worker processes can run
simultaneously. This configuration canyield high parallel performance by
providing 1/O parallelism.

Figure 22-5: Multiple worker processes access multiple partitions

Table on 3 data_devl data_dev2 data_dev3
partitions

W NG N

Hash-based index scans

Figure 22-6 shows a hash-based index scan. Hash-based index scans can
be performed using nonclustered indexes or clustered indexes on data-
only-locked tables. Each worker process navigates higher levels of the
index and reads the leaf-level pages of the index. Each worker process
then hashes on either the datapage ID or the key value to determine which
data pages or data rows to process. Reading every leaf page produces
negligible overhead.

513

Types of parallel data access

Figure 22-6: Hash-based, nonclustered index scan

WP2 WP3

v

Index Pages

g Mgl

Data Pages

- Pages read by worker process 1

‘i’/ /’ / |:| Pages read by worker process 2

f D Pages read by worker process 3

Parallel processing for two tables in a join

Figure 22-7 shows a nested-loop join query performing a partition-based
scan on atablewith three partitions, and a hash-based index scan, withtwo
worker processes on the second table. When parallel access methods are
used on more than one table in a nested-loop join, the total number of
worker processes required isthe product of worker process for each scan.
In this case, six workers perform the query, with each worker process
scanning both tables. Two worker processes scan each partition in thefirst
table, and all six worker processes navigate the index tree for the second
table and scan the leaf pages. Each worker process accesses the data pages
that correspond to its hash value.

The optimizer chooses aparallel plan for atable only when a scan returns
20 pages or more. These types of join queries require 20 or more matches
on the join key for the inner table in order for the inner scan to be
optimized in parallel.

514

CHAPTER 22 Parallel Query Processing

Figure 22-7: Join query using different parallel access methods on

each table
Tablel:
Partitioned table data_dev1 data_dev2 data_dev3
on 3 devices
Table2:

Nonclustered index
with more than 20
matching rows for
each join key

Data Pages

Pt

showplan messages

showplan prints the degree of parallelism each time atableis accessed in
parallel. The following example shows the messages for each table in the
joinin Figure 22-7:

515

Controlling the degree of parallelism

Executed in parallel with a 2-way hash scan.
Executed in parallel with a 3-way partition scan.

showplan also prints a message showing the total number of worker
processes used. For the query shown in Figure 22-7, it reports:

Executed in parallel by coordinating process and 6
wor ker processes.

See “showplan messages for parallel queries’ on page 814 for more
information and Chapter 23, “Parallel Query Optimization,” for
additional examples.

Controlling the degree of parallelism

516

A parallel query’s degree of parallelism isthe number of worker
processes used to execute the query. This number depends on several
factors, including:

e Thevaluesto which of the parallel configuration parameters or the
session-level limits,

(see Table 22-1 and Table 22-2)
e The number of partitions on atable (for partition-based scans)
e Thelevel of paralelism suggested by the optimizer

e The number of worker processes that are available at the time the
query executes.

You can establish limits on the degree of parallelism:

e Server-wide—using sp_configure with parameters shown in Table 22-
1. Only a System Administrator can use sp_configure.

e For asession—using set with the parameters shownin Table 22-2. All
users can run set; it can also be included in stored procedures.

* Inaselect query — using the parallel clause, as shown in “ Controlling
parallelism for aquery” on page 520.

CHAPTER 22 Parallel Query Processing

Configuration parameters for controlling parallelism

The configuration parameters that give you control over the degree of
parallelism server-wide are shown in Table 22-1.

Table 22-1: Configuration parameters for parallel execution

Parameter Explanation Comment
number of worker processes The maximum number of worker processesavailablefor Restart of server
all parallel queries. Each worker process requires required

approximately as much memory as a user connection.

max parallel degree The number of worker processes that can be used by a Dynamic, no
single query. It must be equal to or less than number of restart required
worker processes and equal to or greater than max scan
parallel degree.

max scan parallel degree The maximum number of worker processesthat canbe Dynamic, no
used for a hash scan. It must be equal to or less than restart required
number of worker processes and max parallel degree.

Configuring number of worker processes affects the size of the data and
procedure cache, so you may want to change the value of total memory
also.

For more information see the System Administration Guide.

When you change max parallel degree or max scan parallel degree, all
query plansin cache are invalidated, so the next execution of any stored
procedure or trigger recompiles the plan and uses the new values.

How limits apply to query plans

When queries are optimized, the configuration parameters affect query
plans.

e max parallel degree limits:
¢ The number of worker processes for a partition-based scan

¢ Thetotal combined number of worker processes for nested-loop
join queries, where parallel access methods are used on more
than onetable

¢ The number of worker processes used for the merge and sort
steps in merge joins

¢ Thenumber of worker processes that can be used by parallel sort
operations

517

Controlling the degree of parallelism

e max scan parallel degree limits the number of worker processes for
hash-based table scans and index scans.

How the limits work in combination

You might configure number of worker processes to 50 to allow multiple
parallel queriesto operate at the same time. If the table with the largest
number of partitions has 10 partitions, you might set max parallel degree to
10, limiting all select queriesto a maximum of 10 worker processes. Since
hash-based scans operate best with 2—3 worker processes, max scan
parallel degree could be set to 3.

For asingle-table query, or ajoin involving serial access on other tables,
some of the parallel possibilities allowed by these values are:

e Parald partition scans on any tables with 2—10 partitions
e Hash-based table scans with up to 3 worker processes

* Hash-based nonclustered index scans on tables with nonclustered
indexes, with up to 3 worker processes

For nested-loop joins where parallel methods are used on more than one
table, some possible parallel choices are:

« Joins using a hash-based scan on one table and partitioned-based
scans on tables with 2 or 3 partitions

« Joins using partition- based scans on both tables. For example:

e A parallel degree of 3 for apartitioned table multiplied by max
scan parallel degree of 3 for a hash-based scan requires 9 worker
processes.

* A tablewith 2 partitions and atable with 5 partitions requires 10
worker processes for partition-based scans on both tables.

e Tableswith 4-10 partitions can beinvolved in ajoin, with one or
more tables accessed in serial.

For merge joins:

e Forafull-mergejoin, 10 worker processes scan the base tables (unless
these are fewer than 10 distinct values on the join keys); the number
of partitions on the tablesis not considered.

* For amergejoin that scans atable and selects rows into a worktable:

518

CHAPTER 22 Parallel Query Processing

e Thescanthat precedes the mergejoin may be performedin seria
orinparalld. Thedegreeof parallelismisdetermined intheusual
way for such a query.

¢ For the merge, 10 worker processes are used unless there are
fewer distinct valuesin the join key.

¢ For the sort, up to 10 worker processes can be used.

For fast performance, while creating a clustered index on atable with 10
partitions, the setting of 50 for number of worker processes allows you to
set max parallel degree to 20 for the create index command.

For more information on configuring worker processes for sorting, see
“Worker process requirements for parallel sorts’ on page 581.

Examples of setting parallel configuration parameters

The following command sets number of worker processes:
sp_configure "nunber of worker processes", 50

After arestart of the server, these commands set the other configuration
parameters:

sp_configure "max parallel degree", 10
sp_configure "max scan parallel degree", 3

To display the current settings for these parameters, use:

sp_configure "Parallel Query"

Using set options to control parallelism for a session

Two set options|et you restrict the degree of parallelism on asession basis
or in stored procedures or triggers. These options are useful for tuning
experiments with parallel queries and can also be used to restrict
noncritical queriesto run in serial, so that worker processes remain
available for other tasks. The set options are summarized in Table 22-2.

Table 22-2: set options for parallel execution tuning

Parameter

Function

parallel_degree

Sets the maximum number of worker processes for a query in a session, stored
procedure, or trigger. Overrides the max parallel degree configuration parameter,
but must be less than or equal to the value of max parallel degree.

519

Controlling the degree of parallelism

Parameter

Function

scan_parallel_degree

Sets the maximum number of worker processes for a hash-based scan during a
specific session, stored procedure, or trigger. Overrides the max scan parallel
degree configuration parameter but must be less than or equal to the value of max
scan parallel degree.

If you specify avaluethat istoo largefor set either option, the value of the
corresponding configuration parameter is used, and a message reports the
valuein effect. While set parallel_degree or set scan_parallel_degree isin
effect during a session, the plans for any stored procedures that you
execute are not placed in the procedure cache. Procedures executed with
these options in effect may produce suboptimal plans.

set command examples

Thisexamplerestrictsall queries started in the current session to 5 worker
processes:

set parallel_degree 5

While this command isin effect, any query on atable with morethan 5
partitions cannot use a partition-based scan.

To remove the session limit, use:

set parallel_degree O
or
set scan_parallel _degree 0

To run subsequent queriesin serial mode, use:

set parallel _degree 1
or
set scan_parallel _degree 1

Controlling parallelism for a query

520

The parallel extension to the from clause of aselect command allows users
to suggest the number of worker processes used in aselect statement. The
degree of parallelism that you specify cannot be more than the value set
with sp_configure or the session limit controlled by aset command. If you
specify ahigher value, the specification isignored, and the optimizer uses
the set or sp_configure limit.

The syntax for the select Sstatement is:

CHAPTER 22 Parallel Query Processing

select ...
from tablename [([index index_name]
[parallel [degree_of parallelism | 11]]
[prefetch size] [Irujmru])] ,
tablename [([index index_name]
[parallel [degree_of parallelism | 1]
[prefetch size] [Irujmru])] ...

Query level parallel clause examples

To specify the degree of parallelism for asingle query, includeparallel after
the table name. This example executes in serial:

select * from huge_table (parallel 1)

This example specifiestheindex to usein the query, and setsthe degree of
paralelismto 2:

select * from huge_table (index ncix parallel 2)

See “ Suggesting a degree of parallelism for a query” on page 419 for
more information.

Worker process availability and query execution

At runtime, if the number of worker processes specified in the query plan
isnot available, Adaptive Server creates an adjusted query plan to execute
the query using fewer worker processes. Thisiscalled aruntime
adjustment, and it can result in serial execution of the query.

A runtime adjustment now and then probably indicates an occasional,
momentary bottleneck. Frequent runtime adjustments indicate that the
system may not be configured with enough worker processes for the
workload.

See “Runtime adjustments to worker processes’ on page 559 for more
information.

You can a'so use the set process_limit_action option to control whether a
query or stored procedure should silently use an adjusted plan, whether it
should warn the user, or whether the command should fail if it cannot use
the optimal number of worker processes.

See “Using set process _limit_action” on page 569 for more information.

Runtime adjustments are transparent to end users, except:

521

Commands for working with partitioned tables

e A query that normally runsin parallel may perform very slowly in
serial.

« |f set process_limit_action is in effect, they may get awarning, or the
query may be aborted, depending on the setting.

Other configuration parameters for parallel processing

Two additional configuration parametersfor parallel query processing are:

* number of sort buffers — configures the maximum number of buffers
that parallel sort operations can use from the data cache.

See “Caches, sort buffers, and parallel sorts’ on page 585.

e memory per worker process — establishes a pool of memory that all
worker processes use for messaging during query processing. The
default value, 1024 bytes per worker process, providesample spacein
almost all cases, so this value should not need to be reset.

See “Worker process management” on page 914 for information on
monitoring and tuning this value.

Commands for working with partitioned tables

522

Detailed steps for partitioning tables, placing them on specific devices,
and loading data with parallel bulk copy are in Chapter 5, “Controlling
Physical Data Placement.” The commands and tasks for creating,
managing, and maintaining partitioned tables are:

* alter database —to make devices available to the database.

* sp_addsegment —to create a segment on adevice; sp_extendsegment
to extend the segment over additional devices, and sp_dropsegment to
drop the log and system segments from data devices.

e create table...on Segment_name — to create a table on a segment.

e alter table...partition and alter table...unpartition —to add or remove
partitioning from atable.

» create clustered index —to distribute the data evenly acrossthetable's
partitions.

CHAPTER 22 Parallel Query Processing

« bep (bulk copy) —with the partition number added after the table
name, to copy data into specific table partitions.

e sp_helpartition —to display the number of partitions and the
distribution of datain partitions, and sp_helpsegment to check the
space used on each devicein a segment and on the segment as a
whole.

Figure 22-8 shows a scenario for creating a new partitioned table.

523

Commands for working with partitioned tables

Figure 22-8: Steps for creating and loading a new partitioned table

alter database makes devices available to — —
the database.

sp_addsegment creates a segment on a

device, sp_extendsegment extends the —— I
segment over additional devices, and
sp_dropsegment drops log and system ; _

segments from data devices.

create table...on segment_name creates
the table on the segment.

alter table...partition creates a partition on — —
each device.

|
|
&) L)L)

Parallel bulk copy loads data into
each partition from an input data
file.

T10 cooking 6.95 A Unified Approach to...
T10001 cooking 42,95 Scheme foraninternet...
T10007 cooking 47.95 Internet Protocol Ha...
T10023 cooking 46.95 Proposed change inP...
T10029 cooking 7495 System Summary for...
T10032 fiction 35.95 Cyberpunk

T10035 cooking 49.95 Achieving reliable coo...
T10038 cooking 12.95 Reliable Recipes
T25355 business 69.95 Plan and schedule 7
T39076 psychology 10.95 Reallocation and Urb...
T56358 UNDECIDED 39.95 New title

T75542 romance 4495 Rosalie’s Romance
T10056 cooking 1.95 Brave New Cookery
T25361 business 4295 Network Nuisance
T39082 psychology 6.95 On the problem...
authentication for network mail

524

CHAPTER 22 Parallel Query Processing

Balancing resources and performance

CPU resources

Maximum parallel performance requires multiple CPUs and multiple I/O
devicesto achieve 1/O parallelism. As with most performance
configuration, parallel systemsreach apoint of diminishing returns, and a
later point where additional resources do not yield performance
improvement.

You need to determine whether queriesare CPU-intensive or I/O-intensive
and when your performance is blocked by CPU saturation or 1/0
bottlenecks. If CPU utilization is low, spreading a table across more
devices and using more worker processes increases CPU utilization and
provides improved response time. Conversely, if CPU utilization is
extremely high, but the I/O system is not saturated, increasing the number
of CPUs can provide performance improvement.

Without an adequate number of engines (CPU resources), tasks and
worker processes must wait for access to Adaptive Server engines, and
response time can be slow. Many factors determine the number of engines
needed by the system, such as whether the query is CPU intensive or 1/0
intensive, or, at different times, both:

» Worker processes tend to spend time waiting for disk 1/0 and other
system resources while other tasks are active on the CPU.

* Queriesthat perform sorts and aggregates tend to be more CPU-
intensive.

» Execution classes and engine affinity bindings on parallel CPU-
intensive queries can have complex effects on the system. If there are
not enough CPUs, performance for both serial and parallel queries,
can be degraded.

See Chapter 4, “Distributing Engine Resources,” for more
information.

525

Guidelines for parallel query configuration

Disk resources and I/O

In most cases, configuring the physical layout of tables and indexes on
devicesisthe key to parallel performance. Spreading partitions across
different disks and controllers can improve performance during partition-
based scanning if all of the following conditions are true:

« Dataisdistributed over different disks.
e Those disks are distributed over different controllers.

e There are enough worker processes available at runtime to allocate
one worker process for each partition.

Tuning example: CPU and I/O saturation

One experiment on a CPU-bound query found near-linear scaling in
performance by adding CPUs until the 1/O subsystem became saturated.
At that point, additional CPU resourcesdid not improve performance. The
query performs atable scan on an 800MB table with 30 partitions, using
16K 1/0O. Table 22-3 shows the CPU scaling.

Table 22-3: Scaling of engines and worker processes

Throughput
Elapsed time, CPU per device,
Engines (in seconds) utilization 1/0 saturation per second
1 207 100% Not saturated .13MB
2 100 98.7% Not saturated .27TMB
4 50 98% Not saturated .53MB
8 27 93% 100% saturated .99MB

Guidelines for parallel query configuration

Parallel processing places very different demands on system resources
than running the same queriesin serial. Two components in planning for
parallel processing are:

* A good understanding of the capabilities of the underlying hardware
(especially disk drives and controllers) in use on your system

e A set of performance goals for queries you plan to run in parallel

526

CHAPTER 22 Parallel Query Processing

Hardware guidelines

Some guidelines for hardware configuration and disk 1/0 speeds are:

Each Adaptive Server engine can support about fiveworker processes
before saturating on CPU utilization for CPU-intensive queries. If
CPU is not saturated at thisratio, and you want to improve parallel
query performance, increase the ratio of worker processes to engines
until 1/0 bandwidth becomes a bottleneck.

For sequential scans, such as table scans using 16K 1/O, it may be
possible to achieve 1.6MB per second, per device, that is, 100 16K
1/Os, or 800 pages per second, per device.

For queries doing random access, such as nonclustered index access,
the figure is approximately 50 2K 1/Os, or 50 pages per second, per
device.

One I/O controller can sustain atransfer rate of up to 10-18MB per
second. This means that one SCSI 1/O controller can support up to

6 —10 devices performing sequential scans. Some high-end disk
controllers can support more throughput. Check your hardware
specifications, and use sustained rates, rather than peak rates, for your
calculations.

RAID disk arrays vary widely in performance characteristics,
depending on the RAID level, the number of devicesin the stripe set,
and specific features, such as caching. RAID devices may provide
better or worse throughput for parallelism than the same number of
physical disks without striping. In most cases, start your parallel
query tuning efforts by setting the number of partitions for tables on
these devices to the number of disksin the array.

Working with your performance goals and hardware guidelines

The following examples use the hardware guidelines and Table 22-3 to
provideillustrate how to use parallelism to meet performance goals:

The number of partitionsfor atable should belessthan or equal to the
number of devices. For the experiment showing scaling of engines
and worker processes shown in Table 22-3, there were 30 devices
available, so 30 partitions were used. Performance is optimal when
each partition is placed on a separate physical device.

527

Guidelines for parallel query configuration

e Determine the number of partitions based on the 1/0 throughput you
want to achieve. If you know your disks and controllers can sustain
1MB per second per device, and you want a table scan on an 800MB
table to complete in 30 seconds, you need to achieve approximately
27MB per second total throughput, so you would need at least 27
devices with one partition per device, and at |east 27 worker
processes, one for each partition. These figures are very close to the
I/O rates in the examplein Table 22-3.

e Estimate the number of CPUs, based on the number of partitions, and
then determine the optimum number by tracking both CPU utilization
and 1/0 saturation. The example shown in Table 22-3 had 30
partitions available. Following the suggestions in the hardware
guidelines of one CPU for each five devices suggests using six
engines for CPU-intensive queries. At that level, I/0 was not
saturated, so adding more engines improved response time.

Examples of parallel query tuning

The following examples use the 1/0O capabilities described in “Hardware
guidelines’ on page 527.

Improving the performance of a table scan

528

Thisexample shows how atable might be partitioned to meet performance
goals. Queriesthat scan whole tables and return alimited number of rows
are good candidates for parallel performance. An example is this query
containing group by:

sel ect type, avg(price)
fromtitles

group by type
Here are the performance statistics and tuning goals:

Tablesize 48,000 pages
Access method Table scan, 16K 1/0
Serial response time 60 seconds

Target performance 6 seconds

The steps for configuring for parallel operation are:

CHAPTER 22 Parallel Query Processing

e Create 10 partitionsfor thetable, and evenly distribute the dataacross
the partitions.

e Set the number of worker processes and max parallel degree
configuration parametersto at least 10.

e Check that the table uses a cache configured for 16K 1/0.

In serial execution, 48,000 pages can be scanned in 60 seconds using 16K
I/O. In parallel execution, each process scans 1 partition, approximately
4,800 pages, in about 6 seconds, again using 16K 1/0.

Improving the performance of a nonclustered index scan

The following example shows how performance of aquery using a
nonclustered index scan can beimproved by configuring for a hash-based
scan. The performance statistics and tuning goals are:

Data pages accessed 1500

Access method Nonclustered index, 2K 1/0
Serial response time 30 seconds

Target performance 6 seconds

The steps for configuring for parallel operation are:

¢ Set max scan parallel degree configuration parametersto 5to use 5
worker processes in the hash-based scan.

e Set number of worker processes and max parallel degree to at least 5.

In parallel execution, each worker process scans 300 pages in 6 seconds.

Guidelines for partitioning and parallel degree

Here are some additional guidelinesto consider when you are moving
from serial query execution to parallel execution or considering additional
partitioning or additional worker processes for a system already running
paralel queries:

e If the cache hit ratio for atable is more than 90 percent, partitioning
the table will not greatly improve performance. Since most of the
needed pages are in cache, there is no benefit from the physical 1/0
parallelism.

529

Guidelines for parallel query configuration

e |f CPU utilization is more than 80 percent, and a high percentage of

the queriesin your system can make use of parallel queries, increasing
the degree of parallelism may cause CPU saturation. This guideline
also applies to moving from all-serial query processing to parallel
query processing, where a large number of queries are expected to
make use of parallelism. Consider adding more engines, or start with
alow degree of parallelism.

e |f CPU utilizationishigh, and afew usersrunlarge DSS querieswhile

most users execute OLTP queries that do not operatein parallel,
enabling or increasing parallelism can improve response time for the
DSS queries. However, if response time for OLTP queriesiscritical,
start with alow degree of parallelism, or make small changesto the
existing degree of parallelism.

e |f CPU utilization is low, move incrementally toward higher degrees
of parallelism. On a system with two CPUs, and an average CPU
utilization of 60 percent, doubling the number of worker processes
would saturate the CPUSs.

e If I/Ofor the devicesis well below saturation, you may be able to
improve performance for some queries by breaking the one-partition-
per-device guideline. Except for RAID devices, alwaysuseamultiple
of the number of logical devicesin asegment for partitioning; that is,
for atable on a segment with four devices, you can use eight
partitions. Doubling the number of partitions per device may cause
extra disk-head movement and reduce /O parallelism. Creating an
index on any partitioned table that has more partitions than devices
prints awarning message that you can ignore in this case.

Experimenting with data subsets

530

Parallel query processing can provide the greatest performance gains on
your largest tables and most 1/O-intensive queries. Experimenting with
different physical layouts on huge tables, however, is extremely time-
consuming. Here are some suggestions for working with smaller subsets
of data:

CHAPTER 22 Parallel Query Processing

For initial exploration to determine the types of query plans that
would be chosen by the optimizer, experiment with a proportional
subset of your data. For example, if you have a 50-million row table
that joinsto a5-million row table, you might choose to work with just
one-tenth of the data, using 5 million and 500,000 rows. Select
subsets of the tables that provide valid joins. Pay attention tojoin
selectivity—if the join on the table would run in parallel because it
would return 20 rows for a scan, be sure your subset reflects thisjoin
selectivity.

The optimizer does not take underlying physical devicesinto account;
only the partitioning on the tables. During exploratory tuning work,
distributing your data on separate physical deviceswill giveyou more
accurate predictions about the probable characteristics of your
production system using the full tables. You can partition tables that
reside on asingle device and ignore any warning messages during the
early stages of your planning work, such astesting configuration
parameters, table partitioning and checking your query optimization.
Of course, this does not provide accurate /O statistics.

Working with subsets of data can help determine parallel query plansand
the degree of parallelism for tables. One differenceis that with smaller
tables, sortsare performed in serial that would be performed in parallel on
larger tables.

System level impacts

Locking issues

In addition to other impacts described throughout this chapter, here are
some concerns to be aware of when adding parallelism to mixed DSS and
OLTP environments. Your goal should be improved performance of DSS
through parallelism, without adverse effects on the performance of OLTP
applications.

Look out for lock contention:

» Pardld queries are slower than queries bench marked without
contention. If the scansfind many pageswith exclusivelocksdue
to update transactions, performance can change.

531

System level impacts

e |f parallel queriesreturn alarge number of rows using network
buffer merges, thereislikely to be high contention for the
network buffer. Queries hold shared |ocks on data pages during
the scans and cause data modifications to wait for the shared
locks to be released. You may need to restrict queries with large
result setsto serial operation.

« |If your applications experience deadlocks when DSS queries are
runningin serial, you may seeanincreasein deadlockswhenyou
runthesequeriesin parallel. Thetransaction that isrolled back in
these deadlocks islikely to be the OLTP query, because the
rollback decision for deadl ocksisbased on the accumulated CPU
time of the processesinvolved.

See “Deadlocks and concurrency” on page 262 for more
information on deadlocks.

Device issues

Configuring multiple devices for tempdb should improve performance for
parallel queriesthat require worktables, including those that perform sorts
and aggregates and those that use the reformatting strategy.

Procedure cache effects

Parallel query plansareslightly larger than serial query plans becausethey
contain extrainstructions on the partition or pages that the worker
processes need to access.

During ad hoc queries, each worker process needs a copy of the query
plan. Space from the procedure cacheis used to hold these plansin
memory, and is availabl e to the procedure cache again when the ad hoc
query completes.

Stored procedures in cache are invalidated when you change the max
parallel degree and max scan parallel degree configuration parameters. The
next time a query isrun, the query is read from disk and recompiled.

532

CHAPTER 22 Parallel Query Processing

When parallel query results can differ

When a query does not include vector or scalar aggregates or does not
require afinal sorting step, a parallel query might return resultsin a
different order from the same query run in serial, and subsequent
executions of the same query in parallel might return results in different
order each time.

Results from serial and parallel queriesthat include vector or scalar
aggregates, or require afinal sort step, are returned after all of the results
from worktables are merged or sorted in the final query processing step.
Without query clauses that require this final step, parallel queries send
results to the client using a network buffer merge, that is, each worker
process sends results to the network buffer as it retrieves the data that
satisfies the queries.

Therelative speed of the different worker processes|eadsto differencesin
result set ordering. Each parallel scan behaves differently, due to pages
already in cache, lock contention, and so forth. Parallel queries always
return the same set of results, just not in the same order. If you need a
dependable ordering of results, use order by or run the query in serial
mode.

In addition, due to the pacing effects of multiple worker processesreading
data pages, two types of queries accessing the same data may return
different results when an aggregate or afinal sort is not done:

* Queriesthat use set rowcount

* Queriesthat select acolumninto alocal variable without sufficiently-
restrictive query clauses

Queries that use set rowcount

The set rowcount option stops processing after a certain number of rows
arereturned to the client. With serial processing, the results are consistent
in repeated executions. In serial mode, the same rows are returned in the
same order for a given rowcount value, because a single process reads the
data pages in the same order every time.

533

When parallel query results can differ

With parallel queries, the order of the results and the set of rows returned
candiffer, because worker processes may access pages sooner or later than
other processes. When set rowcount isin effect, each row is written to the
network buffer asit is found and the buffer is sent to the client when itis
full, until the required number of rows have been returned. To get
consistent results, you must either use a clause that performs afinal sort
step or run the query in serial mode.

Queries that set local variables
This query setsthe value of alocal variable in a select statement:

select @id =title id fromtitles
where type = "busi ness”

The where clause matches multiple rowsin the titles table. so the local
variable isaways set to the value from the last matching row returned by
the query. The value is always the same in serial processing, but for
parallel query processing, the results depend on which worker process
finishes last. To achieve a consistent result, use a clause that performs a
final sort step, execute the query in serial mode, or add clauses so that the
query arguments select only single rows.

Achieving consistent results

To achieve consistent results for the types of queries discussed in this
section, you can either add a clause to enforce afinal sort or you can run
the queriesin serial mode. The query clauses that provide afinal sort are:

e order by

« distinct, except for uses of distinct within an aggregate, such as
avg(distinct price)

e union, but not union all
To run queriesin serial mode, you can:
e Useset parallel_degree 1 to limit the session to serial operation

* Includethe (parallel 1) clause after each tablelisted in the from clause
of the query

534

CHAPTER 23

Parallel Query Optimization

This chapter describes the basic strategies that Adaptive Server usesto
perform parallel queries and explains how the optimizer applies those
strategiesto different queries. Parallel query optimization is an automatic
process, and the optimized query plans created by Adaptive Server

generally yield the best response time for a particular query.

However, knowing the internal workings of a parallel query can help you
understand why queries are sometimes executed in serial, or with fewer
worker processes than you expect. Knowing why these events occur can
help you make changes el sewhere in your system to ensure that certain
queries are executed in parallel and with the desired number of processes.

Topic Page
What is parallel query optimization? 536
When is optimization performed? 536
Overhead costs 537
Parallel access methods 538
Summary of parallel access methods 548
Degree of parallelism for paralel queries 550
Parallel query examples 559
Runtime adjustment of worker processes 567
Diagnosing parallel performance problems 571
Resource limits for parallel queries 573

535

What is parallel query optimization?

What is parallel query optimization?

Parallel query optimization is the process of analyzing a query and
choosing the best combination of parallel and serial access methodsto
yield the fastest response time for the query. Parallel query optimizationis
an extension of the serial optimization strategies discussed in earlier
chapters. In addition to the costing performed for serial query
optimization, parallel optimization analyzes the cost of parallel access
methods for each combination of join orders, join types, and indexes. The
optimizer can choose any combination of serial and parallel access
methods to create the fastest query plan.

Optimizing for response time versus total work

Serial query optimization selects the query plan that is the least costly to
execute. Since only one process executes the query, choosing the | east
costly plan yields the fastest response time and requires the least amount
of total work from the server.

Thegoal of executing queriesin parallel isto get thefastest responsetime,
even if it involves more total work from the server. During parallel query
optimization, the optimizer uses cost-based comparisons similar to those
used in serial optimization to select afinal query plan.

However, since multiple worker processes execute the query, a parallel
query plan regquires more total work from Adaptive Server. Multiple
worker processes, engines, and partitions that improve the speed of a
query require additional costsin overhead, CPU utilization, and disk
access. In other words, serial query optimization improves performance by
minimizing the use of server resources, but parallel query optimization
improves performance for individual queries by fully utilizing available
resources to get the fastest response time.

When is optimization performed?

The optimizer considers parallel query plans only when Adaptive Server
and the current session are properly configured for parallelism, as
described in “ Controlling the degree of parallelism” on page 516.

536

CHAPTER 23 Parallel Query Optimization

Overhead costs

If both the Adaptive Server and the current session are configured for
parallel queries, then all querieswithin the session are eligiblefor parallel
query optimization. Individual queries can also attempt to enforce parallel
query optimization by using the optimizer hint parallel N for paralléel or
parallel 1 for serial.

If the Adaptive Server or the current session is not configured for parallel
queries, or if agiven query usesoptimizer hintsto enforce serial execution,
then the optimizer considers serial access methods; the parallel access
methods described in this chapter are not considered.

Adaptive Server does not execute parallel queries against system tables.

Parallel queriesincur more overhead costs to perform such internal tasks
as

» Allocating and initializing worker processes
» Coordinating worker processes as they execute a query plan
» Deallocating worker processes after the query is completed

To avoid applying these overhead costs to OLTP-based queries, the
optimizer “disqualifies’ tablesfrom using parallel access methodswhen a
scan would access fewer than 20 data pagesin atable. Thisrestriction
applies whether or not an index is used to access a table's data. When
Adaptive Server must scan fewer than 20 data pages, the optimizer
considers only serial table and index scans and does not consider parallel
optimization.

Factors that are not considered

When computing the cost of a parallel access method, the optimizer does
not consider factors such as the number of engines available, the ratio of
engines to CPUs, and whether or not a table's partitions reside on
dedicated physical devices and controllers. Each of these factors can
significantly affect the performance of a query. It is up to the System
Administrator to ensure that these resources are configured in the best
possible way for the Adaptive Server system as awhole.

537

Parallel access methods

See “Configuration parameters for controlling parallelism” on page 517
for information on configuring Adaptive Server.

See “Commands for partitioning tables” on page 93 for information on
partitioning your data to best facilitate parallel queries.

Parallel access methods

The following sections describe parallel access methods and other
strategies that the optimizer considers when optimizing parallel queries.
Parallel access methods fall into these general categories:

538

Partition-based access methods use two or more worker processes
to access separate partitions of atable. Partition-based methods yield
the fastest response times because they can distribute the work in
accessing atable over both CPUs and physical disks. At the CPU
level, worker processes can be queued to separate enginesto increase
processing performance. At the physical disk level, worker processes
can perform I/O independently of one another, if thetable’s partitions
are distributed over separate physical devices and controllers.

Hash-based access methods provide parallel access to partitioned
tables, using either table scans or index scans. Hash-based strategies
employ multiple worker processes to work on a single chain of data
pages or a set of index pages. I/0O is not distributed over physical
devices or controllers, but worker processes can till be queued to
multiple enginesto distribute processing and improve response times.

Range-based access methods provide parallel access during merge
joins on partitioned tables and unpartitioned tables, including
worktables created for sorting and merging, and viaindexes. The
partitioning on the tablesis not considered when choosing the degree
of parallelism, so it isnot distributed over physical devices or
controllers. Worker processes can be queued to multiple engines to
distribute processing and improve response times.

CHAPTER 23 Parallel Query Optimization

Parallel partition scan

In aparallel partition scan, multiple worker processes completely scan
each partition in a partitioned table. One worker processis assigned to
each partition, and each process reads all pagesin the partition. Figure 23-
lillustrates aparallel partition scan.

Figure 23-1: Parallel partition scan

Partitioned Table

Worker Partition 1
process A
process B

-)
Worker Partition 3
process C

-)

The parallel partition scan operates faster than a serial table scan. The
work is divided over several worker processes that can execute
simultaneously on different engines. Some worker processes can be
executing during the time that others sleep on 1/0 or other system
resources. |f the table partitions reside on separate physical devices, 1/0
parallelismis also possible.

539

Parallel access methods

Requirements for consideration

Cost model

The optimizer considers the parallel partition scan only for partitioned
tablesin a query. The table’s data cannot be skewed in relation to the
number of partitions, or the optimizer disqualifies partition-based access
methods from consideration. Table datais considered skewed when the
size of the largest partition istwo or more times the average partition size.

Finally, the query must access at least 20 data pages before the optimizer
considers any parallel access methods.

The Adaptive Server optimizer computes the cost of aparallel table
partition scan asthelargest number of logical and physical I/Osperformed
by any one worker processin the scan. In other words, the cost of this
access method equals the 1/0 required to read all pagesin the largest
partition of the table.

For example, if atable with 3 partitions has 200 pagesinitsfirst partition,
300 pagesin its second, and 500 pagesin itslast partition, the cost of
performing a partition scan on that table is 500 logical and 500 physical
1/0s (assuming 2K /O for the physical 1/0). In contrast, the cost of aserial
scan of thistableis 1000 logical and physical 1/Os.

Parallel clustered index partition scan (allpages-locked tables)

540

A clustered index partition scan uses multiple worker processes to scan
data pages in a partitioned table when the clustered index key matches a
search argument. This method can be used only on allpages-locked tables.

One worker processisassigned to each partition in the table. Each worker
process accesses data pages in the partition, using one of two methods,
depending on the range of key values accessed by the process. When a
partitioned table has a clustered index, rows are assigned to partitions
based on the clustered index key.

Figure 23-2 shows a clustered index partition scan that spans three
partitions. Worker processesA, B, and C are assigned to each of thetable's
three partitions. The scan involves two methods:

¢ Method 1

CHAPTER 23 Parallel Query Optimization

Worker process A traverses the clustered index to find the first
starting page that satisfies the search argument, about midway
through partition 1. It then begins scanning data pages until it reaches
the end of partition 1.

¢ Method 2

Worker processes B and C do not use the clustered index, but, instead,
they begin scanning data pages from the beginning of their partitions.
Worker process B completes scanning when it reaches the end of
partition 2. Worker process C compl etes scanning about midway
through partition 3, when the data rows no longer satisfy the search
argument.

Figure 23-2: Parallel clustered index partition scan

Values assigned to

select avg (price) Partitioned table ~ M® Partition

from t1 Worker Partition 1 1
where keyvalue > 400 process A
and keyvalue < 2700

1000
7 Worker Partition 2 1001
/ process B
7 C
-) 2000
Worker Partition 3 2001
process C)
Index pages (
-
3000

541

Parallel access methods

Requirements for consideration

Cost model

The optimizer considers a clustered index partition scan only when:
* Thequery accesses at least 20 data pages of the table.
e Thetableis partitioned and uses allpages locking.

e Thetable'sdatais not skewed in relation to the number of partitions.
Table datais considered skewed when the size of the largest partition
istwo or more times the average partition size.

The Adaptive Server optimizer computes the cost of a clustered index
partition scan differently, depending on the total number of pagesthat need
to be scanned:

e |f thetotal number of pages that need to be scanned is less than or
equal to two times the average size of a partition, the optimizer costs
the scan as the total number of pages to be scanned divided by 2.

e |f thetotal number of pagesthat need to be scanned isgreater than two
times the average size of a partition, the optimizer costs the scan as
the average number of pagesin a partition.

The actual cost of the scan may be higher if:

e Thetotal number of pagesthat need to be scanned islessthan the size
of apartition, and

e Thedatato be scanned lies entirely within one partition

If both of these conditions are true, the actual cost of the scan isthe same
asif the scan were executed serially.

Parallel hash-based table scan

542

Parallel hash-based table scans are performed slightly differently,
depending on the locking scheme of the table.

CHAPTER 23 Parallel Query Optimization

Hash-based table scans

on allpages-locked tables

In a hash-based table scan on an allpages-locked table, multiple worker
processes scan a single chain of data pagesin atable simultaneoudly. All
worker processes traverse the page chain and apply an internal hash
function to each page ID. The hash function determines which worker
process reads the rows in the current page. The hash function ensures that
only one worker process scans the rows on any given page of the table.
Figure 23-3 illustrates the hash-based table scan.

Figure 23-3: Parallel hash-based table scan on an allpages-locked
table

Worker Single page chain

processes

A, B,and C
Pages scanned Pages scanned Pages scanned
by A by B by C

Hash-based table scans

The hash-based scan providesaway to distribute the processing of asingle
chain of data pages over multiple engines. The optimizer may use this
access method for the outer table of ajoin query to process ajoin condition
inparallel.

on data-only-locked tables

A hash-based scan on a data-only-locked table hashes on either the extent
number or the allocation page number, rather than hashing on the page
number. The choi ce of whether to hash on the all ocation page or the extent
number is a cost-based decision made by the optimizer. Both methods can
reduce the cost of performing parallel queries on unpartitioned tables.
Queriesthat choose a serial scan on an allpages-locked table may use one
of the new hash-based scan methods if the table is converted to data-only
locking.

543

Parallel access methods

Requirements for consideration

Cost model

Parallel hash-based

544

The optimizer considers the hash-based table scan only for heap tables,
and only for outer tablesin ajoin query—it does not consider this access
method for clustered indexes or for single-table queries. Hash-based scans
can be used on either unpartitioned or partitioned tables. The query must
accessat least 20 data pages of the table before the optimizer considersany
parallel access methods.

The optimizer computes the cost of a hash-based table scan asthe total
number of logical and physical 1/Os required to scan the table.

For an allpages-locked table, the physical 1/0 cost is approximately the
same as for a serial table scan. The logical cost isthe number of pagesto
be read multiplied by the number of worker processes. The cost per worker
processisonelogical I/0 for each pagein thetable, and approximately 1/N
physical 1/0Os, with N being the number of worker processes.

For a data-only-locked table, this is approximately the same cost applied
to aserial table scan, with the physical and logical 1/0 divided evenly
between the worker processes.

index scan

An index hash-based scan can be performed using either a nonclustered
index or a clustered index on a data-only-locked table. To perform the
scan:

e All worker processes traverse the higher index levels.
e All worker processes scan the leaf-level index pages.

For data-only-locked tables, the worker processes scanning the leaf level
hash on the page ID for each row, and scan the matching data pages.

For allpages-locked tables, a hash-based index scan is performed in one of
two ways, depending on whether thetableisaheap table or hasaclustered
index. The major difference between the two methods is the hashing
mechanism:

e For atable with a clustered index, the hash is on the key values.
« For aheap table, the scan hashes on the page ID.

CHAPTER 23 Parallel Query Optimization

Figure 23-4 illustrates a nonclustered index hash-based scan on a heap
table with two worker processes.

Figure 23-4: Nonclustered index hash-based scan

s

Index pages

[1=]

Data pages
e :
Pages scanned by Pages scanned by Pages scanned by
both worker worker worker
processes process 1 process 2

Cost model and requirements
The cost model of a nonclustered index scan uses the formula:

Scan Cost = Number of index levels

+ Number of leaf pages / pages per IO
+ (Number of data pages / pages per |0) / number of worker processes

545

Parallel access methods

The optimizer considers a hash-based index scan for any tablesin aquery
that have useful nonclustered indexes, and for data-only-locked tables
with clustered indexes. The query must also access at least 20 data pages
of thetable.

Note If anonclustered index covers the result of a query, the optimizer
does not consider using the nonclustered index hash-based scan.

See “Index covering” on page 214 for more information about index
covering.

Parallel range-based scans

Parallel range-based scans are used for the merge processin merge joins.

When two tables are merged in parallel, each worker processisassigned a
range of valuesto merge. The rangeis determined using histogram
statistics or sampling. When a histogram exists for at least one of thejoin
columns, it is used to partition the ranges so that each worker process
operates on approximately the same number of rows. If neither join
column has a histogram, sampling similar to that performed for other
parallel sort operations determines the range of valuesto be merged by
each worker process.

Figure 23-5 shows a parallel right-mergejoin. In this case:

* Aright-mergejoinis used. Tablel, the outer table, is scanned into a
worktable and sorted, then merged with theinner table. These worker
processes are deallocated at the end of this step.

e The outer table has two partitions, so two worker processes are used
to perform a parallel partition scan.

e Theinner table has a nonclustered index on the join key. max parallel
degree is set to 3, so 3 worker processes are used.

Requirements for consideration

546

The optimizer considers parallel merge joins when the configuration
parameter enable merge joins is set to 1 and the table accesses more than
20 data pages from the outer table in the merge join.

CHAPTER 23 Parallel Query Optimization

Figure 23-5: A parallel right-merge join

Tablel: data_devl data_dev2

Partitioned table
on 2 devices

A A

&\ Worktablel
Table2:

-
Nor_w_lustered index Aﬁﬁz
on join key

Index pages

pee

Merge runs after sort

-,

Pages read by:

Data Ppages - All worker processes

. Worker process 1
I:l Worker process 2

D Worker process 3

547

Summary of parallel access methods

Additional parallel strategies

Partitioned worktables

Parallel sorting

Adaptive Server may employ additional strategieswhen executing queries
in parallel. Those strategies involve the use of partitioned worktables and
parallel sorting.

For queriesthat require aworktable, Adaptive Server may chooseto create
a partitioned worktable and populate it using multiple worker processes.
Partitioning the worktabl e improves performance when Adaptive Server
populatesthe table, and therefore, improvesthe response time of the query
asawhole.

See “Parallel query examples’ on page 559 for examples of queries that
can benefit from the use of partitioned worktables.

Parallel sorting employs multiple worker processesto sort datain parallel,
similar to the way multiple worker processes execute aquery in parallel.
create index and any query that requires sorting can benefit from the use of
parallel sorting.

The optimizer does not directly optimize or control the execution of a
parallel sort.

See “Parallel query examples’ on page 559 for examples of queries that
can benefit from the parallel sorting strategy.

Also, see “Overview of the parallel sorting strategy” on page 577 for a
detailed explanation of how Adaptive Server executes a sort in parallel.

Summary of parallel access methods

548

Table 23-1 summarizes the potential use of parallel access methodsin
Adaptive Server query processing. In all cases, the query must access at
least 20 data pagesin the table before the optimizer considers parallel
access methods.

CHAPTER 23 Parallel Query Optimization

Table 23-1: Parallel access method summary

Requirements for Competing
Parallel method Major cost factors consideration serial methods
Partition-based scan Number of pagesin the largest Partitioned table with Seria table scan,
partition balanced data seria index scan
Hash-based table scan Number of pagesin table Any outer tablein ajoin Seria table scan,
query and that is aheap seria index scan
Clustered index partition If total number of pagesto be Partitioned table with a Serial index scan

scan scanned <= 2 * number of pagesin
average-sized partition, then: Total

number of pagesto be scanned / 2

If total number of pagesto be
scanned > 2 * number of pagesin
average-sized partition, then:
Average number of pagesin a
partition

Number of index pages above | eaf

useful clustered index;
alpages locking only

Hash-based index scan Any table with a useful Serial index scan

level to scan + number of leaf-level
index pages to scan + (number of
data pages referenced in leaf-level
index pages/ number of worker
processes)

nonclustered index or a
data-only-locked table
with a clustered index

Range-based scan

Number of pages to be accessed in
both tables/number of worker
processes, plus any sort costs

Anytableinajoineligible Seria merge,
for mergejoin nested-loop join
consideration

Selecting parallel access methods

For agiven table in a query, the optimizer first evaluates the available
indexes and partitions to determine which access methods it can use to
scan the table's data. For any query that involves ajoin, Adaptive Server
considers a range-based merge join, and considers using a parallel merge
joinif parallel query processing isenabled. The use of arange-based scan
does not depend on table partitioning, and range-based scans can be
performed using clustered and nonclustered indexes. They are considered,
and are very likely to be used, on tables that have no useful index on the
join key.

Table 23-2 showsthe other parallel access methodsthat the optimizer may
evaluate for different table and index combinations. Hash-based table
scans are considered only for the outer table in a query, unless the query
uses the parallel optimizer hint.

549

Degree of parallelism for parallel queries

Table 23-2: Determining applicable partition or hash-based access
methods

Useful index (nonclustered

Useful clustered or clustered on data-only-

No useful index index locked table)

Partitioned Table Partition scan Clustered index Nonclustered index hash-based
Hash-based table scan partition scan scan
(if tableis aheap) Serial index scan Serial index scan
Seria table scan

Unpartitioned Table Hash-based table scan Serial index scan Nonclustered index hash-based
(if tableis a heap) scan
Seria table scan Serial index scan

The optimizer may further eliminate parallel access methods from
consideration, based on the number of worker processesthat are available
to the query. This process of elimination occurs when the optimizer
computes the degree of parallelism for the query as awhole.

For an example, see “Partitioned heap table” on page 557.

Degree of parallelism for parallel queries

550

The degree of parallelism for aquery isthe number of worker processes
chosen by the optimizer to execute the query in parallel. The degree of
parallelism depends on both the upper limit to the degree of parallelism for
the query and on the level of parallelism suggested by the optimizer.

Computing the degree of parallelism for aquery isimportant for two
reasons:

e Thefinal degree of parallelism directly affects the performance of a
query since it specifies how many worker processes should do the
work in paralld.

CHAPTER 23 Parallel Query Optimization

Upper limit

Optimized degree

¢ While computing the degree of parallelism, the optimizer disqualifies

parallel access methods that would require more worker processes
than the limits set by configuration parameters, the set command, or
the parallel clausein a query. This reduces the total number of access
methods that the optimizer must consider when costing the query,
and, therefore, decreasesthe overall optimization time. Disqualifying
access methods in this manner is especially important for multitable
joins, wherethe optimizer must consider many different combinations
of join orders and access methods before selecting afinal query plan.

A System Administrator configures the upper limit to the degree of
parallelism using server-wide configuration parameters. Session-wideand
query-level options can further limit the degree of parallelism. These
limits set both the total number of worker processes that can beused in a
parallel query and the total number of worker processes that can be used
for hash-based access methods.

The optimizer removes from consideration any parallel access methods
that would require more worker processes than the upper limit for the
query. (If the upper limit to the degree of parallelism is 1, the optimizer
does not consider any parallel access methods.)

See “Configuration parameters for controlling parallelism” on page 517
for more information about configuration parameters that control the
upper limit to the degree of parallelism.

The optimizer can potentially use worker processes up to the maximum
degree of parallelism set at the server, session, or query level. However,
the optimized degree of parallelism may be less than this maximum. For
partition-based scans, the optimizer chooses the degree of parallelism
based on the number of partitionsin the tables of the query and the number
of worker processes configured.

551

Degree of parallelism for parallel queries

Worker processes for partition-based scans

For partition-based access methods, Adaptive Server requires one worker
process for every partition in atable. If the number of partitions exceeds
max parallel degree or a session-level or query-level limit, the optimizer
uses a hash-based or serial access method; if a merge join can be used, it
may choose a merge join using the max parallel degree.

Worker processes for hash-based scans

For hash-based access methods, the optimizer does not compute an
optimal degree of parallelism; instead, it uses the number of worker
processes specified by the max scan parallel degree parameter. It is up to
the System Administrator to set max scan parallel degree to an optimal
value for the Adaptive Server system asawhole. A general rule of thumb
isto set this parameter to no more than 2 or 3, since it takes only 2-3
worker processes to fully utilize the I/0O of agiven physical device.

Worker processes for range-based scans

A merge join can use multiple worker processes to perform:

e The scan that selects rows into aworktable, for any merge join that
requires a sort

* Theworktable sort
e Themergejoin and subsequent joinsin the step

* Therange scan of both tables during afull merge join

Usage while creating the worktable

552

If aworktable is needed for amerge join, the query step that creates the
worktable can use a serial or parallel access method for the scan. The
number of worker processes for this step is determined by the usual
methods for selecting the number of worker processes for aquery. The
query that selects the rows into the worktable can be a single-table query
or ajoin performing a nested-loop or merge join, or a combination of
nested-loops joins and amerge join.

CHAPTER 23 Parallel Query Optimization

Parallel sorting for merge-join worktables

Number of merge threads

Parallel sorting is used when the number of pagesin the worktable to be
sorted is eight times the value of the number of sort buffers configuration
parameter.

See Chapter 24, “Parallel Sorting,” for more information about parallel
sorting.

For the merge step, the number of merge threads is set to max parallel
degree, unless the number of distinct valuesis smaller than max parallel
degree. If the number of values to be merged is smaller than the max
parallel degree, the task uses one worker process per value, with each
worker process merging one value. If the tables being merged have
different numbers of distinct values, the lower number determines the
number of worker processes to be used. The formulais:

Worker processes = min (max pll degree, min(t1_uniqg_vals, t2_unig_vals))

Total usage for merge joins

When thereis only one distinct value on the join column, or thereis an
equality search argument on ajoin column, the merge step is performedin
serial mode. If amergejoinisused for this query, the mergeis performed
in serial mode:

select * fromtl, t2
where tl.cl =t2.cl
and tl1.cl = 10

A merge join can use up to max parallel degree threads for the merge step
and up to max parallel degree threads can be used for each sort. A merge
that performs a parallel sort may use up to 2* max parallel degree threads.
Worker processes used for sorts are released when the sort completes.

553

Degree of parallelism for parallel queries

Nested-loop joins

554

For individual tablesin anested-loop join, the optimizer computes the
degree of parallelism using the same rules described in “ Optimized
degree” on page551. However, the degree of paralelismfor thejoin query
asawholeisthe product of the worker processes that access individual
tablesinthejoin. All worker processesallocated for ajoin query accessall
tablesin the join. Using the product of worker processesto drive the
degree of parallelism for ajoin ensures that processing is distributed
evenly over partitions and that the join returns no duplicate rows.

Figure 23-6 illustrates this rule for two tables in ajoin where the outer
table has three partitions and the inner table has two partitions. If the
optimizer determinesthat partition-based access methods areto be used on
each table, then the query requires atotal of six worker processes to
execute the join. Each of the six worker processes scans one partition of
the outer table and one partition of the inner table to process the join
condition.

CHAPTER 23 Parallel Query Optimization

Figure 23-6: Worker process usage for a nested-loop join

Outer table
Partition 1

Inner table
Partition 1

Partition 2

Partition 2

Partition 3

Bbbbb%

In Figure 23-6, if the optimizer chose to scan the inner table using a serial
access method, only three worker processes would be required to execute
thejoin. Inthissituation, each worker process would scan one partition of
the outer table, and all worker processes would scan the inner tableto find
matching rows.

Therefore, for any two tablesin a query with scan degrees of mand n
respectively, the potential degrees of parallelism for a nested-loop join
between the two tables are:

e 1, if the optimizer accesses both tables serially

e m*1, if the optimizer accesses the first table using a parallel access
method (with m worker processes), and the second table serially

e n*1,if the optimizer accesses the second table using a parallel access
method (with n worker processes) and the first table serially

555

Degree of parallelism for parallel queries

Alternative plans

m* n, if the optimizer accesses both tables using parallel access
methods

Using partition-based scans on both tablesin ajoin is fairly rare because

of the high cost of repeatedly scanning the inner table. The optimizer may
also choose:

A mergejoin.
The reformatting strategy, if reformatting is a cheaper alternative.

A partitioned-based scan plus a hash-based index scan, when ajoin
returns rows from 20 or more data pages.

See Figure 22-7 on page 515 for an illustration.

Computing the degree of parallelism for nested-loop joins

To determine the degree of parallelism for ajoin between any two tables
(and to disqualify parallel access methods that would require too many
worker processes), the optimizer applies the following rules:

1 The optimizer determines possible access methods and degrees of

parallelism for the outer table of the join. This processisthe same as
for single-table queries.

See “Optimized degree” on page 551.

For each access method determined in step 1, the optimizer calcul ates
the remaining number of worker processes that are available for the
inner table of thejoin. Thefollowing formuladeterminesthis number:

Remaining worker processes = max parallel degree/ Worker processes for outer table

556

3 The optimizer uses the remaining number of worker processes as an

upper limit to determine possible access methods and degrees of
parallelism for the inner table of thejoin.

The optimizer repeats this process for al possible join orders and access
methods and applies the cost function for joins to each combination. The
optimizer selects the least costly combination of join orders and access
methods, and thefinal combination drivesthe degree of parallelismfor the
join query as awhole.

CHAPTER 23 Parallel Query Optimization

See “Nested-loop joins” on page 554 for examples of this process.

Parallel queries and existence joins

Examples

Partitioned heap table

Single-table query

Adaptive Server imposes an additional restriction for subqueries
processed as existence joins. For these queries, only the number of
partitionsin the outer table determines the degree of parallelism. Thereare
only as many worker processes as there are partitionsin the outer table.
Theinner tablein such aquery isalways accessed serially. Thisrestriction
does not apply to subqueries that are flattened into regular joins.

The examples in this section show how the limits to the degree of
parallelism affect the following types of queries:

e A partition heap table
¢ A nonpartitioned heap table
e A tablewith aclustered index

Assume that max parallel degree is set to 10 worker processes and max
scan parallel degree is set to 3 worker processes.

For a single-table query on a heap table with 6 partitions and no useful
nonclustered index, the optimizer costs the following access methods:

e A pardlel partition scan using 6 worker processes
¢ A serial table scan using a single process

If max parallel degree is set to 5 worker processes, then the optimizer does
not consider the partition scan for atable with 6 partitions.

557

Degree of parallelism for parallel queries

Query with a join

The situation changesif the query involvesajoin. If max parallel degree is
set to 10 worker processes, the query involves ajoin, and atable with 6
partitions is the outer table in the query, then the optimizer considers the
following access methods:

e A partition scan using 6 worker processes

e A hash-based table scan using 3 worker processes
e A mergejoin using 10 worker processes

e A serial scan using asingle process

If max scan parallel degree isset to 5 and max scan parallel degree is set to
3, then the optimizer considers the foll owing access methods:

e A hash-based table scan using 3 worker processes
* A mergejoin using 5 worker processes
e A serial scan using asingle process

Finally, if max parallel degree isset to 5 and max scan parallel degree is Set
to 1, then the optimizer considers only a merge join as a parallel access
method.

Nonpartitioned heap table

If the query involves ajoin, and max scan parallel degree is set to 3, and
the nonpartitioned heap table is the outer table in the query, then the
optimizer considers the following access methods:

e A hash-based table scan using 3 worker processes
e A range scan using 10 worker processes for the merge join
e A serial scan using asingle process

If max scan parallel degree is set to 1, then the optimizer does not consider
the hash-based scan.

See “Single-table scans’ on page 560 for more examples of determining
the degree of parallelism for queries.

Table with clustered index

558

If the table has a clustered index, the optimizer considers the following
parallel access methods when the table uses allpages locking:

CHAPTER 23 Parallel Query Optimization

e A paralle partition scan or aparallel clustered index scan, if thetable
is partitioned and max parallel degree is set to at least 6

» A range scan, using max parallel degree worker processes
e A serial scan
If the table uses data-only-locking, the optimizer considers:

e A pardlée partition scan, if the tableis partitioned and max parallel
degree isset to at least 6

¢ A range scan, using max parallel degree worker processes

¢ A seria scan

Runtime adjustments to worker processes

Even after the optimizer determines a degree of parallelism for the query
asawhole, Adaptive Server may make final adjustments at runtimeto
compensate for the actual number of worker processes that are available.
If fewer worker processes are available at runtime than are suggested by
the optimizer, the degree of parallelism isreduced to alevel that is
consistent with the available worker processes and the access methodsin
the final query plan. “Runtime adjustment of worker processes’ on page
567 describesthe process of adjusting the degree of parallelism at runtime
and explains how to determine when these adjustments occur.

Parallel query examples

The following sections further explain and provide examples of how
Adaptive Server optimizes these types of parallel queries:

» Single-table scans

* Multitable joins

* Subqueries

* Queriesthat require worktables
e union queries

* Queries with aggregates

559

Parallel query examples

Single-table scans

Table partition scan

560

* sdlect into statements

Commands that insert, delete, or update data, and commands executed
from within cursors are never considered for parallel query optimization.

The simplest parallel query optimization involves queries that access a
single base table. Adaptive Server optimizes these queries by evaluating
the base table to determine applicable access methods, and then applying
cost functions to select the least costly plan.

Understanding how Adaptive Server optimizes single-table queriesis
integral to understanding more complex parallel queries. Although queries
such as multitable joins and subqueries use additional optimization
strategies, the process of accessing individual tables for those queriesis
the same.

The following example shows instances in which the optimizer uses
parallel access methods on single-table queries.

This example shows a query where the optimizer chooses atable partition
scan over a serial table scan. The configuration and table layout are as
follows:

Configuration parameter values

Parameter Setting
max parallel degree 10 worker processes
max scan parallel degree 2 worker processes

Table layout

Number of
Table name Useful indexes partitions Number of pages
authors None 5 Partition 1: 50 pages

Partition 2: 70 pages
Partition 3: 90 pages
Partition 4: 80 pages
Partition 5: 10 pages

The example query is:

CHAPTER 23 Parallel Query Optimization

sel ect *
from aut hors
where au_| nane < "L"

Using thelogic in Table 23-2 on page 550, the optimizer determines that
the following access methods are available for consideration:

* Partition scan
e Serial table scan

The optimizer does not consider a hash-based table scan for the table,
since the balance of pages in the partitionsis not skewed, and the upper
limit to the degree of parallelism for thetable, 10, is high enough to allow
a partition-based scan.

The optimizer computes the cost of each access method, as follows:
Cost of table partition scan = # of pages in the largest partition = 90 pages

Cost of serial table scan = # of pages in table = 300 pages

The optimizer chooses to perform atable partition scan at a cost of 90
physical and logical 1/0s. Because the table has 5 partitions, the optimizer
chooses to use 5 worker processes. The final showplan output for this
query is:

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 5 worker
processes.
STEP 1
The type of query is SELECT.
Executed in parallel by coordinating process and 5
wor ker processes.
FROM TABLE
aut hors
Nested iteration.
Tabl e Scan.
Forward scan.
Positioning at start of table.
Executed in parallel with a 5-way partition scan.
Using I/0O Size 16 Kbytes for data pages.
Wth LRU Buf fer Replacenent Strategy for data pages.
Paral l el network buffer nerge.

561

Parallel query examples

Multitable joins

When optimizing joins, the optimizer considers the best join order for all

combinations of tables and applicable access methods. The optimizer uses
adifferent strategy to select access methods for inner and outer tables and
the degree of parallelism for the join query as awhole.

Asin serial processing, the optimizer weighs many alternatives for
accessing a particular table. The optimizer balances the costs of parallel
execution with other factors that affect join queries, such as the presence
of aclustered index, the use of either nested-loop or merge joins, the
possibility of reformatting the inner table, the join order, and the I/O and
caching strategy. The following discussion focuses only on parallel versus
serial access method choices.

Parallel join optimization and join orders

This exampleillustrates how the optimizer devises aquery plan for ajoin
query that is eligible for parallel execution. The configuration and table
layout are as follows:

Configuration parameter values

Parameter Setting
max parallel degree 15 worker processes
max scan parallel degree 3 worker processes
Table layout
Table Number of Number of
name partitions pages Number of rows
publishers 1 (not partitioned) 1,000 80,000
titles 10 10,000 (distributed 800,000
evenly over
partitions)

The example query involves asimple join between these two tables:

sel ect *
frompublishers, titles
where publishers.pub_id =titles.pub_id

In theory, the optimizer considers the costs of all the possible
combinations:

562

CHAPTER 23 Parallel Query Optimization

¢ titles asthe outer table and publishers as the inner table, with titles
accessed in parallel

e titles asthe outer table and publishers as the inner table, with titles
accessed serialy

e publishers as the outer table and titles as the inner table, with titles
accessed in parallel

e publishers as the outer table and titles as the inner table, with titles
accessed serialy

¢ publishers astheouter table and titles astheinner table, with publishers
accessed in parallel

For example, the cost of ajoin order in which titles isthe outer tableand is
accessed in parallel is calculated as follows:

The cost of having publishers as the outer table is calculated as follows:

However, other factors are often more important in determining the join
order than whether a particular table is eligible for parallel access.

Scenario A: clustered index on publishers

The presence of auseful clustered index is often the most important factor
in how the optimizer createsa query planfor ajoin query. If publishers has
aclustered index on pub_id and titles has no useful index, the optimizer can
choose the indexed table (publishers) as the inner table. With thisjoin
order, each access to the inner table takes only afew readsto find rows.

With publishers as the inner table, the optimizer costs the eligible access
methods for each table. For titles, the outer table, it considers:

* A paralé partition scan (cost is number of pagesin the largest
partition)

* A seria table scan (cost is number of pagesin the table)

For publishers, the inner table, the optimizer considers only a serial
clustered index scan.

It also considers performing amergejoin, sorting the worktable from titles
into order on titles, either aright-merge or left-merge join.

Thefinal cost of the query is the cost of accessing titles in parallel times
the number of accesses of the clustered index on publishers.

563

Parallel query examples

Scenario B: clustered index on titles

Scenario C: neither table has

564

If titles hasaclustered index on pub_id, and publishers has no useful index,
the optimizer chooses titles as the inner table in the query.

With the join order determined, the optimizer costs the eligible access
methods for each table. For publishers, the outer table, it considers:

e A hash-based table scan (theinitial cost isthe same as a serial table
scan)

For titles, the inner table, the optimizer considers only aserial clustered
index scan.

In this scenario, the optimizer chooses parallel over serial execution of
publishers. Even though a hash-based table scan has the same cost as a
serial scan, the processing timeis cut by one-third, because each worker
process can scan the inner table's clustered index simultaneously.

a useful index

If neither table has a useful index, amerge joinisavery likely choice for
the access method. If mergejoins are disabled, the table size and avail able
cache space can be more important factors than potential parallel access
for join order. The benefits of having a smaller table as the inner table
outweigh the benefits of one parallel access method over the other. The
optimizer choosesthe publishers table astheinner table, becauseitissmall
enough to be read once and kept in cache, reducing costly physical 1/0.

Then, the optimizer costs the eligible access methods for each table. For
titles, the outer table, it considers:

e A paralléel partition scan (cost is number of pagesin the largest
partition)
e A serial table scan (cost is number of pagesin the table)

For publishers, the inner table, it considers only a serial table scan loaded
into cache.

The optimizer chooses to accesstitles in parallel, because it reduces the
cost of the query by afactor of 10.

In some cases where neither table has a useful index, the optimizer
choosesthereformatting strategy, creating atemporary tableand clustered
index instead of repeatedly scanning the inner table.

CHAPTER 23 Parallel Query Optimization

Subqueries

When a query contains a subquery, Adaptive Server uses different access
methods to reduce the cost of processing the subquery. Parallel
optimization depends on the type of subquery and the access methods:

Materialized subqueries— parallel query methods are not considered
for the materialization step.

Flattened subqueries— parallel query optimization is considered only
when the subquery is flattened to aregular join. It is not considered
for existence joins or other flattening strategies.

Nested subqueries — parallel access methods are considered for the
outermost query block in a query containing a subquery; the inner,
nested queries always execute serialy. Although the optimizer
considers parallel access methods for only the outermost query block
in asubquery, al worker processes that access the outer query block
also access the inner tables of the nested subqueries.

Each worker process accesses the inner, nested query block in serial.
Although the subquery is run once for each row in the outer table,
each worker process performs only one-fifth of the executions.
showplan output for the subquery indicates that the nested query is
“Executed by 5 worker processes,” since each worker processusedin
the outer query block scans the table specified in the inner query
block.

Each worker process maintains a separate cache of subquery results,
so the subquery may be executed slightly more often than in serial
processing.

Queries that require worktables

Parallel queriesthat require worktables create partitioned worktables and
populate them in parallel. For queries that require sorts, the parallel sort
manager determines whether to use a serial or parallel sort.

See Chapter 24, “Parallel Sorting,” for more information about parallel
sorting.

565

Parallel query examples

union queries

The optimizer considers parallel access methods for each part of a union
query separately. Each select in aunion is optimized separately, so one
query can use a parallel plan, another a serial plan, and athird a parallel
plan with adifferent number of worker processes. If aunion query requires
aworktable, then the worktable may also be partitioned and populated in
parallel by worker processes.

If aunion query isto return no duplicate rows, then aparallel sort may be
performed on the internal worktable to remove duplicate rows.

See Chapter 24, “Parallel Sorting,” for more information about parallel
sorting.

Queries with aggregates

Adaptive Server considers parallel access methods for queries that return
aggregate resultsin the sameway it doesfor other queries. For queriesthat
use the group by clause to return a grouped aggregate result, Adaptive
Server also creates multiple worktables with clustered indexes—one
worktable for each worker process that executes the query. Each worker
process stores partial aggregate resultsin its designated worktable. As
worker processes finish computing their partial results, they merge those
resultsinto acommon worktable. After all worker processes have merged
their partial results, the common worktable contains the final grouped
aggregate result set for the query.

select into statements

566

select into creates a new table to store the query’s result set. Adaptive
Server optimizes the base query portion of a select into command in the
same way it does a standard query, considering both parallel and serial
access methods. A select into statement that is executed in paralldl:

1 Createsthe new table using columns specified in the select into
statement.

2 Creates n partitionsin the new table, where n is the degree of
parallelism that the optimizer chose for the query as awhole.

3 Populatesthe new table with query results, using n worker processes.

CHAPTER 23 Parallel Query Optimization

4 Unpartitions the new table.

Performing aselect into statement in parallel requires additional stepsthan
the equivalent seria query plan. Therefore, the execution of a parallel
select into statement takes place using four discrete transactions, rather
than the two transactions of a seria select into statement. See select in the
Adaptive Server Reference Manual for information about how this affects
the database recovery process.

Runtime adjustment of worker processes

The output of showplan describesthe optimized plan for agiven query. An
optimized query plan specifies the access methods and the degree of
parallelism that the optimizer suggests when the query is compiled. At
execution time, there may be fewer worker processes available than are
required by the optimized query plan. This can occur when:

* There are not enough worker processes available for the optimized
query plan.

* Theserver-level or session-level limitsfor the query were reduced
after the query was compiled. This can happen with queries executed
from within stored procedures.

Inthese circumstances, Adaptive Server may create an adjusted query plan
to compensate for the available worker processes. An adjusted query
plan is generated at runtime and compensates for the lack of available
worker processes. An adjusted query plan may usefewer worker processes
than the optimized query plan, and it may use a serial access method
instead of a parallel method for one or more of the tables.

The response time of an adjusted query plan may be significantly longer
than its optimized counterpart. Adaptive Server provides:

» A setoption, process_limit_action, which allows you to control
whether runtime adjustments are allowed.

» Information on runtime adjustments in sp_sysmon output.

567

Runtime adjustment of worker processes

How Adaptive Server adjusts a query plan

Adaptive Server uses two basic rules to reduce the number of required
worker processesin an adjusted query plan:

1 If theoptimized query plan specifies a partition-based access method
for atable, but not enough processes are available to scan each
partition, the adjusted plan uses a seria access method.

2 |If the optimized query plan specifies a hash-based access method for
atable, but not enough processes are available to cover the optimized
degree of parallelism, the adjusted plan reduces the degree of
parallelism to alevel consistent with the available worker processes.

Toillustrate the first case, assume that an optimized query plan
recommends scanning atabl e sfive partitions using apartition-based table
scan. If only four worker processes are actually available at the time the
query executes, Adaptive Server creates an adjusted query plan that
accesses the table in serial, using a single process.

Inthe second case, if the optimized query plan recommended scanning the
table with a hash-based access method and five worker processes, the
adjusted query plan would still use a hash-based access method, but with,
at the most, four worker processes.

Evaluating the effect of runtime adjustments

568

Although optimized query plans generally outperform adjusted query
plans, the differencein performanceisnot awayssignificant. Theultimate
effect on performance depends on the number of worker processes that
Adaptive Server usesin the adjusted plan, and whether or not a serial
access method is used in place of a parallel method. Obvioudly, the most
negative impact on performance occurs when Adaptive Server uses a
serial accessmethod instead of aparallel access method to execute aquery.

The performance of multitable join queries can also suffer dramatically
from adjusted query plans, since Adaptive Server does not changethejoin
ordering when creating an adjusted query plan. If an adjusted query plan
is executed in serial, the query can potentially perform more slowly than
an optimized serial join. This may occur because the optimized parallel
join order for aquery is different from the optimized serial join order.

CHAPTER 23 Parallel Query Optimization

Recognizing and managing runtime adjustments

Adaptive Server provides two mechanisms to help you observe runtime
adjustments of query plans.

e set process_limit_action allows you to abort batches or procedures
when runtime adjustments take place or print warnings.

¢ showplan prints an adjusted query plan when runtime adjustments
occur, and showplan is effect.

Using set process_limit_action

Using showplan

The process_limit_action option to the set command lets you monitor the
use of adjusted query plans at a session or stored procedure level. When
you set process_limit_action to “abort,” Adaptive Server records Error
11015 and aborts the query, if an adjusted query planis required. When
you set process_limit_action to “warning,” Adaptive Server records Error
11014 but still executes the query.

For example, this command aborts the batch when a query is adjusted at
runtime;

set process_limt_action abort

By examining the occurrences of Errors 11014 and 11015 in the error log,
you can determine the degree to which Adaptive Server uses adjusted
query plansinstead of optimized query plans. To remove the restriction
and allow runtime adjustments, use:

set process_limt_action quiet

See set in the Adaptive Server Reference Manual for more information
about process_limit_action.

When you use showplan, Adaptive Server displays the optimized plan for
agiven query before it runs the query. When the query plan involves
parallel processing, and a runtime adjustment is made, showplan displays
this message, followed by the adjusted query plan:

AN ADJUSTED QUERY PLAN W LL BE USED FOR STATEMENT 1
BECAUSE NOT ENOUGH WORKER PROCESSES ARE AVAI LABLE AT
THI'S TI ME.

569

Runtime adjustment of worker processes

Adaptive Server does not attempt to execute a query when the set noexec
isin effect, so runtime plans are never displayed while using this option.

Reducing the likelihood of runtime adjustments

To reduce the number of runtime adjustments, you must increase the
number of worker processesthat are availableto parallel queries. You can
do this either by adding more total worker processes to the system or by
restricting or eliminating parallel execution for noncritical queries, as
follows:

» Useset parallel_degree and/or set scan_parallel_degree to set session-
level limits on the degree of parallelism, or

* Usethequery-level parallel 1 and parallel N clausesto limit the worker
process usage of individual statements.

To reduce the number of runtime adjustments for system procedures,
recompile the procedures after changing the degree of parallelism at the
server or session level. See sp_recompile inthe Adaptive Server Reference
Manual for more information.

Checking runtime adjustments with sp_sysmon

570

sp_sysmon shows how many times a request for worker processes was
denied dueto alack of worker processes and how many times the number
of worker processes recommended for a query was adjusted to a smaller
number. The following sections of the report provide information:

e “Worker process management” on page 914 describes the output for
the number of worker process requeststhat were requested and denied
and the success and failure of memory requests for worker processes.

e “Paralléel query management” on page 917 describes the sp_sysmon
output that reports on the number of runtime adjustments and locks
for parallel queries.

CHAPTER 23 Parallel Query Optimization

If insufficient worker processes in the pool seems to be the problem,
compare the number of worker processes used to the number of worker
processes configured. If the maximum number of worker processes used
is equal to the configured value for number of worker processes, and the
percentage of worker process requests denied is greater than 80 percent,
increase the value for number of worker processes and re-run sp_sysmon.
If the maximum number of worker processes used is less than the
configured value for number of worker processes, and the percentage of
worker thread requests denied is 0 percent, decreases the value for number
of worker processes to free memory resources.

Diagnosing parallel performance problems

The following sections provide troubleshooting guidelines for parallel
queries. They cover two situations:

» Thequery runsin serial, when you expect it to run in parallel.

» Thequery runsin paralel, but does not perform aswell asyou expect.

Query does not run in parallel

If you think that a query should run in parallel but does not, possible
explanations are:

» Themax parallel degree configuration parameter is set to 1, or the
session-level setting set parallel_degree is set to 1, preventing all
parallel access.

* Themax scan parallel degree configuration parameter issetto 1, or the
session level setting set scan_parallel_degree is set to 1, preventing
hash-based parallel access.

» Thereareinsufficient worker threads at execution time. Check for
runtime adjustments, using the tools discussed in “ Runtime
adjustments to worker processes’ on page 559.

» Thescope of the scanislessthan 20 data pages. This can be bypassed
with the (parallel) clause.

* Theplan callsfor atable scan and:

571

Diagnosing parallel performance problems

e Thetableisnot aheap,

e Thetableisnot partitioned,

e The partitioning is unbalanced, or

e Thetableisaheap but is not the outer table of ajoin.

The last two conditions can be bypassed with the (parallel) clause.
e Theplan callsfor aclustered index scan and:

e Thetableisnot partitioned, or

e The partitioning is unbalanced. This can be bypassed with the
(parallel) clause.

e Theplan calls for anonclustered index scan, and the chosen index
coversthe required columns.

e Thetableisatemporary table or a system table.
e Thetableistheinner table of an outer join.

e A limit has been set through the Resource Governor, and al parallel
plans exceed that limit in terms of total work.

e Thequery isatypethat is not made parallel, such asaninsert, update,
or delete command, a nested (not the outermost) query, or a cursor.

Parallel performance is not as good as expected
Possible explanations are:
e Therearetoo many partitions for the underlying physical devices.
e There aretoo many devices per controller.
e The (parallel) clause has been used inappropriately.

e Themax scan parallel degree is set too high; the recommended range
is2-3.

Calling technical support for diagnosis

If you cannot diagnose the problem using these hints, the following
information will be needed by Sybase Technical Support to determine the
source of the problem:

572

CHAPTER 23 Parallel Query Optimization

¢ Thetable and index schema—create table, alter table...partition, and
create index statements are most hel pful. Provide output from sp_help
if the actual create and alter commands are not available.

e Thequery.

¢ Theoutput of the query run with commands:
¢ dbcc traceon (3604,302, 310)
* setshowplanon
° set noexec on

¢ Thestatistics io output for the query.

Resource limits for parallel queries

The tracking of 1/O cost limits may be less precise for partitioned tables
than for unpartitioned tables, when Adaptive Server is configured for
parallel query processing.

When you query a partitioned table, all the labor in processing the query
is divided among the partitions. For example, if you query atable with
three partitions, the query’swork is divided among 3 worker processes. If
the user has specified an 1/0 resource limit with an upper bound of 6000,
the optimizer assigns alimit of 2000 to each worker process.

However, since no two threads are guaranteed to perform the exact same
amount of work, the parallel processor cannot precisely distribute the
work among worker processes. You may get an error message saying you
have exceeded your 1/O resource limit when, according to showplan or
statistics io output, you actually have not. Conversely, one partition may
exceed the limit dightly, without the limit taking effect.

See the System Administration Guide for more information about setting
resource limits.

573

Resource limits for parallel queries

574

charTER 24 Parallel Sorting

This chapter discusses how to configure the server for improved
performance for commands that perform parallel sorts.

The process of sorting datais an integral part of any database
management system. Sorting isfor creating indexes and for processing
complex queries. The Adaptive Server parallel sort manager provides a
high-performance, parallel method for sorting data rows. All Transact-
SQL commands that require an internal sort can benefit from the use of
parallel sorting.

Parallel sorting and how it works and what factors affect the performance
of parallel sortsis also covered. You need to understand these subjects to
get the best performance from parallel sorting, and to keep parallel sort
resource requirements from interfering with other resource needs.

Topic Page
Commands that benefits from parallel sorting 575
Requirements and resources overview 576
Overview of the parallel sorting strategy 577
Configuring resources for parallel sorting 580
Recovery considerations 594
Tools for observing and tuning sort behavior 594
Using sp_sysmon to tune index creation 599

Commands that benefits from parallel sorting

Any Transact-SQL command that requires data row sorting can benefit
from parallel sorting techniques. These commands are:

* create index commands and the alter table...add constraint commands
that build indexes, unique and primary key

* Queriesthat use the order by clause

* Queriesthat use distinct

575

Requirements and resources overview

e Queriesthat perform merge joins requiring sorts
e Queriesthat use union (except union all)
e Queriesthat usethe reformatting strategy

In addition, any cursors that use the above commands can benefit from
parallel sorting.

Requirements and resources overview

576

Like parallel query processing, parallel sorting requires more resources
than performing the same commandin parallel. Responsetimefor creating
the index or sorting query resultsimproves, but the server performs more
work due to overhead.

Adaptive Server’s sort manager determineswhether the resourcesrequired
to perform a sort operation in parallel are available, and also whether a
serial or parallel sort should be performed, given the size of the table and
other factors. For a parallel sort to be performed, certain criteria must be
met:

» Theselectinto/bulk copy/plisort database option must be set to true with
sp_dboption in the target database:

* For indexes, the option must be enabled in the database where the
tableresides. For creating aclustered index on apartitioned table,
this option must be enabled, or the sort fails. For creating other
indexes, serial sorts can be performed if parallel sorts cannot be
performed.

» For sorting worktables, this option must be on in tempdb. Serial
sorts can be performed if parallel sorts cannot be performed.

e Paralel sorts must have a minimum number of worker processes
available. The number depends on the number of partitions on the
table and/or the number of devices on the target segment. The degree
of parallelism at the server and session level must be high enough for
the sort to use at least the minimum number of worker processes
required for a parallel sort. Clustered indexes on partitioned tables
must be created in parallel; other sorts can be performed in serial if
there are not enough worker processes available. “Worker process
reguirements for parallel sorts’ on page 581 and “Worker process
reguirements for select query sorts’” on page 584.

CHAPTER 24 Parallel Sorting

¢ For select commands that require sorting, and for creating
nonclustered indexes, the table to be sorted must be at least eight
times the size of the available sort buffers (the value of the number of
sort buffers configuration parameter), or the sort will be performed in
serial mode. This ensures that Adaptive Server does not perform
parallel sorting on smaller tables that would not show significant
improvements in performance. This rule does not apply to creating
clustered indexes on partitioned tables, since this operation aways
requires a parallel sort.

See “ Sort buffer configuration guidelines” on page 587.

e For create index commands, the value of the number of sort buffers
configuration parameter must be at least as large as the number of
worker processes available for the parallel sort.

See “ Sort buffer configuration guidelines” on page 587.

Note You cannot usethe dump transaction command after indexesare
created using a parallel sort. You must dump the database. Serial
create index commands can be recovered, but only by completely re-
doing the indexing command, which can greatly lengthen recovery
time. Performing database dumps after serial create indexesis
recommended to speed recovery, although it is not required in order
to use dump transaction.

Overview of the parallel sorting strategy

Like the Adaptive Server optimizer, the Adaptive Server parallel sort
manager analyzes the available worker processes, the input table, and
other resourcesto determine the number of worker processesto usefor the
sort.

After determining the number of worker processesto use, Adaptive Server
executes the parallel sort. The process of executing a parallel sort isthe
same for create index commands and queries that require sorts. Adaptive
Server executes a parallel sort by:

1 Creating adistribution map. For amergejoin with statistics on ajoin
column, histogram statistics are used for the distribution map. In other
cases, the input table is sampled to build the map.

577

Overview of the parallel sorting strategy

Step 1. Sampling

2 Reading the table data and dynamically partitioning the key values
into a set of sort buffers, as determined by the distribution map.

3 Sorting each individual range of key values and creating subindexes.
4 Merging the sorted subindexes into the final result set.
Each of these stepsis described in the sections that follow.

Figure 24-1 depicts a parallel sort of atable with two partitions and two
physical devices on its segment.

Figure 24-1: Parallel sort strategy

the data and Partition 1 Distribution map Partition 2
puilding the 9 e i 6 [
distribution map.

Producer Producer

process 1 process 2
Step 2. Partitioning
data into discrete
ranges.
Step 3. Sorting
each range and
creating indexes. Consumer Consumer

process 1 process 2
2K sort buffers [0] (4] (6] [9]
Sorted data or Coordinating Sorted data or
subindex process subindex

Step 4. Merging the

sorted data.

578

Merged result

or index o] 1] [2 [3] (4] 8] [6] [@ (8 [9

CHAPTER 24 Parallel Sorting

Creating a distribution map

Asafirst step in executing a parallel sort, Adaptive Server creates a
distribution map. If the sort is performed as part of amerge join, and there
are statistics on the join columns, the histograms are used to build the
distribution map. For other sorts, Adaptive Server selects and sorts a
random sample of data from the input table. This distribution
information—referred to as the distribution map—is used in the second
sort step to divide the input datainto equally sized ranges during the next
phase of the parallel sort process.

The distribution map contains a key value for the highest key that is
assigned to each range, except the final range inthetable. In Figure 24-1,
the distribution map shows that all values lessthan or equal to 4 are
assigned to thefirst range and that all values greater than 4 are assigned to
the second range.

Dynamic range partitioning

After creating the distribution map, Adaptive Server employstwo kinds of
worker processesto perform different parts of the sort. These worker
processes are called producer processes and consumer processes:

* Producer processes read data from the input table and use the
distribution map to determine the range to which each key value
belongs. The producers distribute the data by copying it to the sort
buffers belonging to the correct range.

» Each consumer process reads the datafrom arange of the sort buffers
and sortsit into subindexes, as described in “ Range sorting” on page
580.

In Figure 24-1, two producer processes read data from the input table.
Each producer process scans one table partition and distributes the data
into ranges using the distribution map. For example, the first producer
processreads datavalues 7, 2, 4, 5, and 9. Based on the information in the
distribution map, the process distributes values 2 and 4 to the first
consumer process, and values 7, 5, and 9 to the second consumer process.

579

Configuring resources for parallel sorting

Range sorting

Merging results

Each partitioned range has a dedicated consumer process that sorts the
datain that range independently of other ranges. Depending on the size of
the table and the number of buffers available to perform the sort, the
consumers may perform multiple merge runs, writing intermediate results
to disk, and reading and merging those results, until al of the datafor the
assigned range is completely sorted.

For create index commands, each consumer for each partitioned range
of datawritesto a separate database device. Thisimproves
performance through increased 1/0 parallelism, if database devices
reside on separate physical devices and controllers. The consumer
process also builds an index, referred to as a subindex, on the sorted
data

For merge joins, each consumer process writes the ordered rowsto a
separate set of linked data pages, onefor each worker processthat will
perform the merge.

For queries, the consumer process simply ordersthe datain the range
from the smallest value to the largest.

After all consumer processes have finished sorting the data for each
partitioned range:

For create index commands, the coordinating process merges the
subindexes into one final index.

For mergejoins, the worker processes for the merge step perform the
merge with the other tables in the mergejoin.

For other queries, the coordinating process mergesthe sort results and
returns them to the client.

Configuring resources for parallel sorting

The following sections describe the resources used by Adaptive Server
when sorting datain parallel:

580

CHAPTER 24 Parallel Sorting

e Worker processes read the data and perform the sort.

e Sort bufferspassdatain cachefrom producersto consumers, reducing
physical 1/0.

e Largel/O poolsin the cache used for the sort also help reduce
physical 1/0.

» Multiplephysical devicesincrease |/O parallelism and help determine
the number of worker processes for most sorts.

Worker process requirements for parallel sorts

Adaptive Server requires a minimum number of worker processesto
perform a parallel sort. If additional worker processes are available, the
sort can be performed more quickly. The minimum number required and
the maximum number that can be used are determined by the number of:

» Partitions on the table, for creating clustered indexes
» Devices, for creating nonclustered indexes

» Threads used to create the worktable and the number of devicesin
tempdb, for merge joins

» Devicesintempdb, for other queries that require sorts
If the minimum number of worker processesis not available:

» Sortsfor clustered indexes on partitioned tables must be performed in
parallel; the sort fails if not enough worker processes are available.

» Sortsfor nonclustered indexes and sorts for clustered indexes on
unpartitioned tables can be performed in serial.

» All sortsfor queries can be performed in serial.

The availability of worker processesis determined by server-wide and
session-wide limits. At the server level, the configuration parameters
number of worker processes and max parallel degree limit the total size of
the pool of worker processes and the maximum number that can be used
by any create index or select command.

581

Configuring resources for parallel sorting

The available processes at runtime may be smaller than the configured
value of max parallel degree or the session limit, due to other queries
running in parallel. The decision on the number of worker processesto use
for a sort is made by the sort manager, not by the optimizer. Since the sort
manager makes this decision at runtime, parallel sort decisions are based
on the actual number of worker processes available when the sort begins.

See “Controlling the degree of parallelism” on page 516 for more
information about controlling the server-wide and session-wide limits.

Worker process requirements for creating indexes

Table 24-1 shows the number of producers and consumers required to
create indexes. The target segment for a sort is the segment where the
index is stored when the create index command completes. When you
create an index, you can specify the location with the on segment_name
clause. If you do not specify a segment, the index is stored on the default
segment.

Table 24-1: Number of producers and consumers used for create
index

Index type Producers Consumers

Nonclustered index Number of partitions, or 1 Number of devices on target segment
Clustered index on unpartitioned 1 Number of devices on target segment
table

Clustered index on partitioned Number of partitions, or 1 Number of partitions

table

582

Consumers are theworkhorses of parallel sort, using CPU timeto perform
the actual sort and using /O to read and write intermediate results and to
write the final index to disk. First, the sort manager assigns one worker
process as a consumer for each target device. Next, if there are enough
available worker processes, the sort manager assigns one producer to each
partition in the table. If there are not enough worker processes to assign
one producer to each partition, the entire table is scanned by asingle
producer.

CHAPTER 24 Parallel Sorting

Clustered indexes on partitioned tables

To createaclustered index on apartitioned table, Adaptive Server requires
at least one consumer process for every partition on the table, plus one
additional worker processto scan thetable. If fewer worker processes are
available, then the create clustered index command fails and prints a
message showing the avail able and required numbers of worker processes.

If enough worker processes are available, the sort manager assigns one
producer process per partition, as well as one consumer process for each
partition. This speeds up the reading of the data.

Minimum 1 consumer per partition, plus 1 producer
Maximum 2 worker processes per partition

Can be performed in No

serid

Clustered indexes on unpartitioned tables

Nonclustered indexes

Only one producer process can be used to scan the input data for
unpartitioned tables. The number of consumer processesis determined by
the number of devices on the segment where the index isto be stored. If
thereare not enough worker processesavailable, the sort can be performed
in serial.

Minimum 1 consumer per device, plus 1 producer
Maximum 1 consumer per device, plus 1 producer
Can be performed in Yes

serid

The number of consumer processes is determined by the number of
devices on the target segment. If there are enough worker processes
availableand thetableis partitioned, one producer processis used for each
partition on the table; otherwise, asingle producer process scansthe entire
table. If there are not enough worker processes available, the sort can be
performed in serial.

Minimum 1 consumer per device, plus 1 producer

Maximum 1 consumer per device, plus 1 producer per partition
Can be performed in Yes

serid

583

Configuring resources for parallel sorting

Using with consumers while creating indexes

RAID devices appear to Adaptive Server as a single database device, so,
although the devices may be capable of supporting the1/O load of parallel
sorts, Adaptive Server assigns only a single consumer for the device, by
default.

The with consumers clause to the create index statement provides away to
specify the number of consumer processes that create index can use. By
testing the 1/0 capacity of striped devices, you can determine the number
of simultaneous processes your RAID device can support and use this
number to suggest a degree of parallelism for parallel sorting. Asa
baseline, use one consumer for each underlying physical device. This
exampl e specifies eight consumers:

create index order_ix on orders (order_id)
with consuners = 8

You can also use the with consumers clause with the alter table...add
constraint clauses that create the primary key and unique indexes:

alter table orders
add constraint primkey primary key (order_id) with
consunmers = 8

The with consumers clause can be used for creating indexes—you cannot
control the number of consumer processes used in internal sorts for
parallel queries. You cannot use this clause when creating a clustered
index on apartitioned table. When creating a clustered index on a
partitioned table, Adaptive Server must use one consumer process for
every partition inthetableto ensurethat thefinal, sorted dataisdistributed
evenly over partitions.

Adaptive Server ignoresthe with consumers clauseif the specified number
of processesis higher than the number of available worker processes, or if
the specified number of processes exceeds the server or session limits for
parallelism.

Worker process requirements for select query sorts

584

Queriesthat require worktable sorts have multistep query plans. The
determination of the number of worker processes for aworktable sort is
made after the scan of the base table completes. During the phase of the
query where data is selected into the worktable, each worker process
selects data into a separate partition of the worktable.

CHAPTER 24 Parallel Sorting

Oncetheworktableis popul ated, additional worker processes are allocated
to perform the sort step. showplan does not report this value; the sort
manager reports only whether the sort is performed in serial or parallel.
The worker processes used in the previous step do not participatein the
sort, but remain allocated to the parallel task until the task compl etes.

Worker processes for merge-join sorts

Other worktable sorts

For merge joins, one consumer processis assigned for each device in
tempdb; if thereisonly one device in tempdb, two consumer processes are
used. The number of producers depends on the number of partitionsin the
worktable, and the setting for max parallel degree:

» |If theworktable is not partitioned, one producer processis used.

» |If the number of consumers plus the number of partitionsin the
worktable isless than or equal to max parallel degree, one producer
processis allocated for each worktable partition.

» |f the number of consumer processes plus the number of partitionsin
the worktable is greater than max parallel degree, one producer
process is used.

For all other worktable sorts, the worktable is unpartitioned when the step

that created it completes. Worker processes are assigned in the following

way:

¢ If thereisonly onedeviceintempdb, the sort is performed using two
consumers and one producer; otherwise, one consumer processis
assigned for each device in tempdb, and a single producer process
scans the worktable.

e If there are more devicesin tempdb than the available worker
processes when the sort starts, the sort is performed in serial.

Caches, sort buffers, and parallel sorts

Optimal cache configuration and an optimal setting for the number of sort
buffers configuration parameter can greatly speed the performance of
parallel sorts. The tuning optionsto consider when you work with parallel
sorting are:

585

Configuring resources for parallel sorting

Cache bindings

e Cachebindings
e Sort buffers
e Largel/O

In most cases, the configuration you choose for normal runtime operation
should be aimed at the needs of queries that perform worktable sorts. You
need to understand how many simultaneous sorts are needed and the
approximate size of the worktables, and then configure the cache used by
tempdb to optimize the sort.

If you drop and create indexes during periods of low system usage, you
can reconfigure caches and pools and change cache bindings to optimize
the sorts and reduce the time required. If you need to perform index
maintenance while users are active, you need to consider the impact that
re configuration could have on user response time. Configuring alarge
percentage of the cache for exclusive use by the sort or temporarily
unbinding obj ectsfrom caches can seriously impact performancefor other
tasks.

Sorts for create index take place in the cache to which the table is bound.
If the tableis not bound to a cache, but the database is, then cache is used.
If there is no explicit cache binding, the default data cacheis used.
Worktabl e sorts use the cacheto which tempdb isbound, or the default data
cache.

To configure the number of sort buffersand large 1/O for a particular sort,
always check the cache bindings. You can see the binding for atable with
sp_help. To see all of the cache bindings on a server, use sp_helpcache.
Once you have determined the cache binding for atable, use
sp_cacheconfig check the space in the 2K and 16K pools in the cache.

Number of sort buffers can affect sort performance

586

Producers perform disk 1/0 to read the input table, and consumers perform
disk 1/0 to read and write intermediate sort results to and from disk.
During the sort, producers pass data to consumers using the sort buffers.
This avoids disk I/O by copying data rows completely in memory. The
reserved buffers are not available to any other tasks for the duration of the
sort.

CHAPTER 24 Parallel Sorting

The number of sort buffers configuration parameter determines the
maximum space that can be used to perform a serial sort. Each sort
instance can use up to the number of sort buffers value for each sort. If
active sorts have reserved all of the buffersin a cache, and another sort
needs sort buffers, that sort waits until buffers are available in the cache.

Sort buffer configuration guidelines

Since number of sort buffers controls the amount of data that can be read
and sorted in one batch, configuring more sort buffersincreases the batch
size, reduces the number of merge runs needed, and makes the sort run
faster. Changing number of sort buffers is dynamic, so you do not have to
restart the server.

Some general guidelines for configuring sort buffers are as follows:

» The sort manager chooses serial sorts when the number of pagesin a
tableisless than 8 times the value of number of sort buffers. In most
cases, the default value (500) works well for select queries and small
indexes. At this setting, the sort manager chooses serial sorting for all
create index and worktable sorts of 4000 pages or less, and parallel
sortsfor larger result sets, saving worker processes for query
processing and larger sorts. It allows multiple sort processesto use up
to 500 sort buffers simultaneously.

A temporary worktable would need to be very large before you would
need to set the value higher to reduce the number of merge runsfor a
sort. See“ Sizing the tempdb” on page 623 for more information.

» If youarecreating indexeson large tableswhile other usersare active,
configure the number of sort buffers so that you do not disrupt other
activity that needs to use the data cache.

» If you are re-creating indexes during scheduled maintenance periods
when few users are active on the system, you may want to configure
ahigh value for sort buffers. To speed your index maintenance, you
may want to benchmark performance of high sort buffer values, large
1/0O, and cache bindings to optimize your index activity.

* Thereduction in merge runsis alogarithmic function. Increasing the
value of number of sort buffers from 500 to 600 has very little effect on
the number of merge runs. Increasing the size to amuch larger value,
such as 5000, can greatly speed the sort by reducing the number of
merge runs and the amount of 1/O needed.

587

Configuring resources for parallel sorting

e If number of sort buffers is set to less than the square root of the
worktable size, sort performance is degraded. Since worktables
include only columns specified in the select list plus columns needed
for later joins, worktable size for mergejoinsis usually considerably
smaller than the original table size.

When enough sort buffers are configured, fewer intermediate steps and
merge runs need to take place during a sort, and physical 1/0O is required.
When number of sort buffers is equal to or greater than the number of pages
in the table, the sort can be performed compl etely in cache, with no
physical 1/0 for the intermediate steps: the only 1/0 required isthe 1/O to
read and write the data and index pages.

Using less than the configured number of sort buffers

There are two types of sortsthat may use fewer than the configured
number of sort buffers:

» Creating a clustered index on a partition table always requires a
parallel sort. If thetable sizeis smaller than the number of configured
sort buffers, then the sort reserves the number of pagesin thetablefor
the sort.

e Small serial sorts reserve just the number of sort buffers required to
hold the table in cache.

Configuring the number of sort buffers parameter

When creating indexesin parallel, the number of sort buffers must be equal
to or less than 90 percent of the number of buffersin the pool area, before
the wash marker, as shown in Figure 24-2.

Figure 24-2: Area available for sort buffers

Up to 90% of the space before the wash

marker can be used for sort buffers
MRU LRU

Using a 2K pool Wash marker

588

CHAPTER 24 Parallel Sorting

Thelimit of 90 percent of the pool sizeisnot enforced when you configure
the number of sort buffers parameter, but it is enforced when you run the
create index command, since the limit is enforced on the pool for thetable
being sorted. The maximum valuethat can be set for number of sort buffers
is32,767; thisvalue is enforced by sp_configure.

Computing the allowed sort buffer value for a pool

sp_cacheconfig returnsthe size of the pool in megabytes and the wash size
in kilobytes. For example, this output shows the size of the poolsin the
default data cache:

Cache: default data cache, Status: Active, Type: Default
Config Size: 0.00 Mo, Run Size: 38.23 Mo
Config Replacenent: strict LRU, Run Repl acenent: strict LRU

Config Partition: 2, Run Partition: 2
IO Size Wash Size Config Size Run Size APF Per cent
2 Kb 4544 Kb 0.00 M 22.23 Mo 10
16 Kb 3200 Kb 16.00 M 16.00 M 10

This procedure takes the size of the 2K pool and itswash size as
parameters, converts both values to pages and computes the maximum
number of pages that can be used for sort buffers:

create proc bufs @ool size nuneric(6,2), @wash int
as
sel ect "90% of non-wash 2k pool" =

((@ool size * 512) - (@wash/2)) * .9

The following example executes bufs with values of “22.23 Mb” for the
pool size and “4544 Kb” for the wash size:

bufs 22.23, 4544
The bufs procedure returns the following results:

90% of non-wash 2k pool

8198. 784
This command sets the number of sort buffers to 8198 pages:

sp_configure "nunber of sort buffers", 8198

589

Configuring resources for parallel sorting

If the table on which you want to create the index is bound to a user-
defined cache, configure the appropriate number of sort buffers for the
specific cache. Asan alternative, you can unbind the table from the cache,
create the index, and rebind the table:

sp_unbi ndcache pubtune, titles
create clustered index title_ix
on titles (title_id)
sp_bi ndcache pubtune_cache, pubtune, titles

Warning! The buffers used by a sort are reserved entirely for the use of
the sort until the sort compl etes. They cannot be used by another other task
on the server. Setting the number of sort buffersto 90 percent of the pool
size can seriously affect query processing if you are creating indexeswhile
other transactions are active.

Procedure for estimating merge levels and 1/O

The following procedure estimates the number of merge runs and the
amount of physical 1/O required to create an index:

Create proc nmerge_runs @ages int, @ufs int
as

declare @uns int, @rerges int, @raxnerge int
select @uns = ceiling (@ages /| @ufs)
/* if all pages fit into sort buffers, no nerge runs needed */

if @uns <=1
select @erges =0

el se

begin
if @uns > @ufs sel ect @uaxnerge = @ufs
el se select @muxnmerge = @uns
if @muaxmerge < 2 select @muaxnerge = 2

sel ect @erges = ceiling(loglo(@uns) / |o0glO(@maxnerge))
end
sel ect @rerges "Merge Level s",
2 * @ages * @merges + @ages "Total 10O

The parameters for the procedure are:

590

CHAPTER 24 Parallel Sorting

e pages—the number of pagesin the table, or the number of leaf-level
pages in a nonclustered index.

¢ bufs—the number of sort buffersto configure.

This example uses the default number of sort buffers for atable with
2,000,000 pages:

mer ge_runs 2000000, 500, 20

The merge_runs procedure estimates that 2 merge runs and 10,000,000
I/Oswould be required to create the index:

Merge Levels Total 10O

2 10000000

Increasing the number of sort buffersto 1500 reducesthe number of merge
runs and the /O required:

mer ge_runs 2000000, 1500
Merge Levels Total 10

1 6000000

Thetota 1/0 predicted by this procedure may be different than the 1/0
usage on your system, depending on the size and configuration of the
cache and pools used by the sort.

Configuring caches for large I/O during parallel sorting
Sorts can use large 1/0:;

¢ During the sampling phase
¢ For the producers scanning the input tables

¢ For the consumers performing disk 1/0 on intermediate and final sort
results

For these steps, sorts can use the largest pool size available in the cache
used by the table being sorted; they can use the 2K pooal if no large I/O
buffers are available.

591

Configuring resources for parallel sorting

Balancing sort buffers and large I/O configuration

Disk requirements

592

Configuring apool for 16K buffersin the cache used by the sort greatly
speeds 1/O for the sort, substantially reducing the number of physical 1/0s
for asort. Part of this /O savings results from using large 1/0 to scan the
input table.

Additional /O, both reads and writes, takes place during merge phases of
the sort. The amount of 1/O during this step depends on the number of
merge phases required. During the sort and merge step, buffers are either
read once and not needed again, or they are filled with intermediate sort
output results, written to disk, and available for reuse. The cache-hit ratio
during sorts will always be low, so configuring alarge 16K cache wastes
space that can better be used for sort buffers, to reduce merge runs.

For example, creating a clustered index on a 250M B table using a 32MB
cache performed optimally with only 4MB configured inthe 16K pool and
10,000 sort buffers. Larger pool sizes did not affect the cache hit ratio or
number of 1/Os. Changing the wash sizefor the 16K pool to the maximum
allowed helped performance slightly, since the small pool size tended to
allow buffersto reach the LRU end of the cache before the writes were
completed. The following formula computes the maximum allowable
wash size for a 16K pool:

select floor((size_in_MB * 1024 /16) * .8) * 16

Disk requirements for parallel sorting are as follows:
e Spaceis needed to store the compl eted index.

e Having multiple devices in the target segment increases the number
of consumers for worktable sorts and for creating nonclustered
indexes and clustered indexes on non partitioned tables.

CHAPTER 24 Parallel Sorting

Space requirements for creating indexes

Creating indexes requires space to store the sorted index. For clustered
indexes, this requires copying the data rows to new locationsin the order
of theindex key. The newly ordered data rows and the upper levels of the
index must be written before the base table can be removed. Unless you
are using the with sorted_data clause to suppress the sort, creating a
clustered index requires approximately 120 percent of the space occupied
by the table.

Creating a nonclustered index requires space to store the new index. To
help determine the size of objects and the space that is available, use the
following system procedures:

» sp_spaceused —to seethe size of thetable. See“Using sp_spaceused
to Display Object Size” on page 338.

» sp_estspace —topredict thesizeof theindex. See*Using sp_estspace
to Estimate Object Size” on page 340.

* sp_helpsegment — to see space | eft on a database segment. See
“Checking data distribution on devices with sp_helpsegment” on
page 101.

Space requirements for worktable sorts

Queriesthat sort worktables (merge joins and order by, distinct, union, and
reformatting) first copy the needed columns for the query into the
worktable and then perform the sort. These worktables are stored on the
system segment in tempdb, so thisisthe target segment for queries that
require sorts. To see the space available and the number of devices, use:

tenmpdb. . sp_hel psegnent system

The process of inserting the rows into the worktable and the parallel sort
do not require multiple devices to operate in parallel. However,
performance improves when the system segment in tempdb spansmultiple
database devices.

Number of devices in the target segment

Asdescribed in “Worker process requirementsfor parallel sorts’ on page
581, the number of devicesin the target segment determines the number
of consumersfor sort operations, except for creating a clustered index on
apartitioned table.

593

Recovery considerations

Performance considerations for query processing, such asthe
improvementsin I/O when indexes are on separate devices from the data
are more important in determining your device allocations and object
placement than sort requirements.

If your worktable sorts are large enough to require parallel sorts, multiple
devicesin the system segment of tempdb will speed these sorts, aswell as
increase |/O parallelism while rows are being inserted into the worktable.

Recovery considerations

Creating indexesisaminimally-logged database operation. Serial sortsare
recovered from the transaction log by completely redoing the sort.
However, parallel create index commands are not recoverable from the
transaction log—after performing aparallel sort, you must dump the
database before you can use the dump transaction command on the
database.

Adaptive Server does not automatically perform parallel sorting for create
index commands unless the select into/bulk copy/plisort database option is
set on. Creating a clustered index on a partitioned table always requires a
parallel sort; other sort operations can be performed in serial if the select
into/bulk copy/plisort option is not enabled.

Tools for observing and tuning sort behavior

594

Adaptive Server provides several tools for working with sort behavior:

* setsort_resources on shows how a create index command would be
performed, without creating theindex. See“Using set sort_resources
on” on page 595.

e Several system procedures can help estimate the size, space, and time
requirements:

» sp_configure — Displays configuration parameters. See
“Configuration parameters for controlling parallelism” on page
517.

CHAPTER 24 Parallel Sorting

e sp_helpartition — Displays information about partitioned tables.
See “ Getting information about partitions” on page 98.

¢ sp_helpsegment —Displaysinformation about segments, devices,
and space usage. See “Checking data distribution on devices
with sp_helpsegment” on page 101.

e sp_sysmon — Reports on many system resources used for parallel
sorts, including CPU utilization, physical 1/0, and caching. See
“Using sp_sysmon to tune index creation” on page 599.

Using set sort_resources on

The set sort_resources on command can help you understand how the sort
manager performsparallel sorting for create index statements. You can use
it before creating an index to determine whether you want to increase
configuration parameters or specify additional consumers for a sort.

After you use set sort_resources on, Adaptive Server does not actually
create indexes, but analyzes resources, performs the sampling step, and
prints detailed information about how Adaptive Server would use parallel
sorting to execute the create index command. Table 24-2 describes the
messages that can be printed for sort operations.

Table 24-2: Basic sort resource messages

Message Explanation See
The Create I ndex i s done sort_typeiseither “Parallel Sort” or “Reguirements and resources
using sort_type “Seria Sort.” overview” on page 576

Sort buffer size: N Nisthe configured valuefor thenumber “Sort buffer configuration
of sort buffers configuration parameter. guidelines’ on page 587
Paral | el degree: N N is the maximum number of worker “Caches, sort buffers, and

processes that the parallel sort canuse, parallel sorts’ on page 585
as set by configuration parameters.

Nunmber of out put N is the total number of database “Disk requirements’ on page

devices: N devices on the target segment. 592

Nurmber of producer N is the optimal number of producer “Worker process requirements

threads: N processes determined by the sort for parallel sorts’ on page 581
manager.

Nurmber of consuner N is the optimal number of consumer “Worker process requirements

threads: N processes determined by the sort for parallel sorts’ on page 581
manager.

595

Tools for observing and tuning sort behavior

Message Explanation See
The distribution nmap M isthe number of elementsthat define “Creating a distribution map”
contains M el enent (s) range boundariesin the distribution on page 579
for N partitions. map. N is the total number of partitions
(ranges) in the distribution map.
Partition El enment:N N isthe number of the distributionmap “Creating a distribution map”
val ue element. value isthe distributionmap ~ on page 579
element that defines the boundary of
each partition.
Nurber of sanpl ed Nisthenumber of sampledrecordsused “Creating a distribution map”
records: N to create the distribution map. on page 579
Examples

The following examples show the output of the set sort_resources
command.

Nonclustered index on a nonpartitioned table

This example shows how Adaptive Server performs parallel sorting for a
create index command on an unpartitioned table. Pertinent details for the
example are:

e The default segment spans 4 database devices.
e max parallel degree is set to 20 worker processes.
* number of sort buffers is set to the default, 500 buffers.

The following commands set sort_resources on and issue a create index
command on the orders table:

set sort_resources on
create index order_ix on orders (order_id)

Adaptive Server prints the following output:

The Create Index is done using Parallel Sort
Sort buffer size: 500

Paral | el degree: 20

Nurmber of output devices: 4

Nurmber of producer threads: 1

Nunber of consuner threads: 4

The distribution map contains 3 elenent(s) for 4
partitions.

Partition El enent: 1

596

CHAPTER 24 Parallel Sorting

458052

Partition Element: 2
909063

Partition Element: 3
1355747

Nurmber of sanpl ed records: 2418

Inthisexample, the 4 deviceson the default segment determinethe number
of consumer processes for the sort. Because the input tableis not
partitioned, the sort manager allocates 1 producer process, for atotal
degree of parallelism of 5.

The distribution map uses 3 dividing values for the 4 ranges. The lowest
input val ues up to and including the value 458052 belong to thefirst range.
Values greater than 458052 and |ess than or equal to 909063 belong to the
second range. Values greater than 909063 and less than or equal to
1355747 belong to the third range. Values greater than 1355747 belong to
the fourth range.

Nonclustered index on a partitioned table

This example uses the same tables and devices as the first example.
However, in thisexample, the input tableis partitioned before creating the
nonclustered index. The commands are:

set sort_resources on
alter table orders partition 9
create index order_ix on orders (order_id)

In this case, the create index command under the sort_resources option
prints the output:

The Create Index is done using Parallel Sort
Sort buffer size: 500

Paral | el degree: 20

Nurber of output devices: 4

Nurmber of producer threads: 9

Nurmber of consumer threads: 4

The distribution map contains 3 elenent(s) for 4
partitions.

Partition Elenment: 1

597

Tools for observing and tuning sort behavior

458464
Partition Elenent: 2

892035
Partition El ement: 3

1349187
Nurmber of sanpl ed records: 2448

Because the input table is now partitioned, the sort manager allocates 9
producer threads, for atotal of 13 worker processes. The number of
elements in the distribution map is the same, although the values differ
dightly from those in the previous sort examples.

Clustered index on partitioned table executed in parallel

598

This example creates a clustered index on orders, specifying the segment
name, order_seg.

set sort_resources on
alter table orders partition 9
create clustered index order_ix

on orders (order_id) on order_seg

Since the number of available worker processesis 20, this command can
use 9 producers and 9 consumers, as shown in the output:

The Create Index is done using Parallel Sort
Sort buffer size: 500

Paral | el degree: 20

Nurmber of output devices: 9

Nurmber of producer threads: 9

Nunber of consuner threads: 9

The distribution map contains 8 elenent(s) for 9
partitions.

Partition El enent: 1

199141
Partition Elenent: 2

397543
Partition El ement: 3

598758
Partition El enment: 4

800484

CHAPTER 24 Parallel Sorting

Sort failure

Partition Element: 5

1010982
Partition El ement: 6

1202471
Partition Element: 7

1397664
Partition El ement: 8

1594563
Nurmber of sanpl ed records: 8055

This distribution map contains 8 elements for the 9 partitions on the table
being sorted. The number of worker processes used is 18.

For example, if only 10 worker processes had been available for this
command, it could have succeeded using asingle producer processto read
the entire table. If fewer than 10 worker processes had been available, a
warning message would be printed instead of the sort_resources output:

Msg 1538, Level 17, State 1:

Server ’'snipe’, Line 1:

Parall el degree 8 is less than required parall el
degree 10 to create clustered index on partition
tabl e. Change the parallel degree to required
parall el degree and retry.

Using sp_sysmon to tune index creation

You can usethe“begin_sample” and “end_sample’ syntax for sp_sysmon
to provide performance results for individual create index commands:

sp_sysmon begi n_sanpl e
create index ...
sp_sysnon end_sanpl e

Sections of the report to check include:

The“Sample Interval,” for the total time taken to create the index
Cache statistics for the cache used by the table

599

Using sp_sysmon to tune index creation

e Check the value for “Buffer Grabs’ for the 2K and 16K poolsto
determine the effectiveness of large I/0.

e Checkthevaue“Dirty Buffer Grabs,” If thisvalueisnonzero, set
the wash size in the pool higher and/or increase the poal size,
using sp_poolconfig.

e Disk I/O for the disks used by the table and indexes: check the value
for “Total Requested 1/0s”

600

CHAPTER 25

Tuning Asynchronous Prefetch

This chapter explains how asynchronous prefetch improves 1/0O
performance for many types of queries by reading data and index pages
into cache before they are needed by the query.

Topic Page
How asynchronous prefetch improves performance 601
When prefetch is automatically disabled 607
Tuning Goals for Asynchronous Prefetch 611
Other Adaptive Server performance features 612
Special settings for asynchronous prefetch limits 615
Maintenance activities for high prefetch performance 616
Performance monitoring and asynchronous prefetch 617

How asynchronous prefetch improves performance

Asynchronous prefetch improves performance by anticipating the pages
required for certain well-defined classes of database activities whose
access patternsare predictable. Thel/O requestsfor these pages areissued
before the query needs them so that most pages are in cache by the time
query processing needs to access the page. Asynchronous prefetch can
improve performance for:

* Sequential scans, such astable scans, clustered index scans, and
covered nonclustered index scans

» Access vianonclustered indexes
» Some dbce checks and update statistics
* Recovery

Asynchronous prefetch can improve the performance of queries that
access large numbers of pages, such as decision support applications, as
long as the I/O subsystems on the machine are not saturated.

601

How asynchronous prefetch improves performance

Asynchronous prefetch cannot help (or may help only dightly) when the
1/0 subsystem is already saturated or when Adaptive Server is CPU-
bound. It may be used in some OLTP applications, but to a much lesser
degree, since OLTP queries generally perform fewer 1/0 operations.

When a query in Adaptive Server needs to perform atable scan, it:
e Examinesthe rows on a page and the values in the rows.

« Checksthecachefor the next pageto beread from atable. If that page
isin cache, the task continues processing. If the page isnot in cache,
the task issues an I/O request and sleeps until the I/0 compl etes.

* When the I/O completes, the task moves from the sleep queue to the
run queue. When the task is scheduled on an engine, Adaptive Server
examines rows on the newly fetched page.

Thiscycle of executing and stalling for disk reads continues until thetable
scan completes. In asimilar way, queries that use a nonclustered index
processadatapage, issuethe /O for the next page referenced by theindex,
and sleep until the I/O completes, if the pageis not in cache.

This pattern of executing and then waiting for 1/0O slows performance for
queriesthat issue physical I/Osfor large number of pages. In addition to

thewaiting timefor the physical I/Osto complete, thetask switcheson and
off the engine repeatedly. Thistask switching adds overhead to processing.

Improving query performance by prefetching pages

602

Asynchronous prefetch issues 1/0 requests for pages before the query
needs them so that most pages are in cache by the time query processing
needs to accessthe page. If required pages are already in cache, the query
does not yield the engine to wait for the physical read. (It may still yield
for other reasons, but it yields less frequently.)

Based on the type of query being executed, asynchronous prefetch builds
alook-ahead set of pagesthat it predicts will be needed very soon.
Adaptive Server defines different look-ahead setsfor each processing type
where asynchronous prefetch is used.

CHAPTER 25 Tuning Asynchronous Prefetch

In some cases, |ook-ahead sets are extremely precise; in others, some
assumptions and speculation may lead to pages being fetched that are
never read. When only asmall percentage of unneeded pagesareread into
cache, the performance gains of asynchronous prefetch far outweigh the
penalty for thewasted reads. If the number of unused pagesbecomeslarge,
Adaptive Server detects this condition and either reduces the size of the
look-ahead set or temporarily disables prefetching.

Prefetching control mechanisms in a multiuser environment

When many simultaneous queries are prefetching large numbers of pages
into a buffer pool, there is arisk that the buffers fetched for one query
could be flushed from the pool before they are used.

Adaptive Server tracksthe buffersbrought into each pool by asynchronous
prefetch and the number that are used. It maintains a per-pool count of
prefetched but unused buffers. By default, Adaptive Server sets an
asynchronous prefetch limit of 10 percent of each pool. In addition, the
limit on the number of prefetched but unused buffersis configurable on a
per-pool basis.

The pool limits and usage statistics act like a governor on asynchronous

prefetch to keep the cache-hit ratio high and reduce unneeded 1/0. Overall,
the effect isto ensure that most queries experience a high cache-hit ratio
and few stalls due to disk 1/O sleeps.

Thefollowing sections describe how the look-ahead set is constructed for
the activities and query types that use asynchronous prefetch. In some
asynchronous prefetch optimizations, allocation pages are used to build
the look-ahead set.

For information on how all ocation pages record information about object
storage, see “Allocation pages’ on page 146.

603

How asynchronous prefetch improves performance

Look-ahead set during recovery

Prefetching log pages

During recovery, Adaptive Server reads each log page that includes
records for atransaction and then reads all the data and index pages
referenced by that transaction, to verify timestampsandtoroll transactions
back or forward. Then, it performs the same work for the next completed
transaction, until al transactions for a database have been processed. Two
separate asynchronous prefetch activities speed recovery: asynchronous
prefetch on the log pages themselves and asynchronous prefetch on the
referenced data and index pages.

The transaction log is stored sequentially on disk, filling extentsin each
allocation unit. Each time the recovery process reads a log page from a
new allocation unit, it prefetches all the pages on that allocation unit that
arein use by thelog.

In databases that do not have a separate log segment, log and data extents
may be mixed on the same allocation unit. Asynchronous prefetch still
fetchesall thelog pages on the all ocation unit, but the look-ahead sets may
be smaller.

Prefetching data and index pages

For each transaction, Adaptive Server scans the log, building the look-
ahead set from each referenced data and index page. While one
transaction’s log records are being processed, asynchronous prefetch
issues requests for the data and index pages referenced by subsegquent
transactions in the log, reading the pages for transactions ahead of the
current transaction.

Note Recovery usesonly the pool in the default data cache. See “ Setting
limits for recovery” on page 615 for more information.

Look-ahead set during sequential scans

604

Sequential scansinclude table scans, clustered index scans, and covered
nonclustered index scans.

CHAPTER 25 Tuning Asynchronous Prefetch

During table scans and clustered index scans, asynchronous prefetch uses
allocation page information about the pages used by the object to construct
the look-ahead set. Each time apage isfetched from anew allocation unit,
the look-ahead set isbuilt from all the pages on that allocation unit that are
used by the object.

The number of times a sequentia scan hops between allocation unitsis
kept to measure fragmentation of the page chain. Thisvalueis used to
adapt the size of the look-ahead set so that large numbers of pages are
prefetched when fragmentation is low, and smaller numbers of pages are
fetched when fragmentation is high. For more information, see “Page
chain fragmentation” on page 609.

Look-ahead set during nonclustered index access

When using a nonclustered index to access rows, asynchronous prefetch
finds the page numbers for all qualified index values on a nonclustered
index leaf page. It builds the look-ahead set from the unique list of all the
pages that are needed.

Asynchronous prefetch is used only if two or more rows qualify.

If anonclustered index access requires several leaf-level pages,
asynchronous prefetch requests are also issued on the leaf pages.

Look-ahead set during dbcc checks
Asynchronous prefetch is used during the following dbcc checks:

¢ dbcc checkalloc, which checks allocation for all tables and indexesin
a database, and the corresponding object-level commands, dbcc
tablealloc and dbcc indexalloc

¢ dbcc checkdb, which checks all tables and index links in a database,
and dbcc checktable, which checks individual tables and their indexes

605

How asynchronous prefetch improves performance

Allocation checking

The dbcc commands checkalloc, tablealloc and indexalloc, which check
page alocations validate information on the allocation page. The look-
ahead set for the dbcc operations that check allocation is similar to the
look-ahead set for other sequential scans. When the scan enters adifferent
allocation unit for the object, the look-ahead set is built from al the pages
on the allocation unit that are used by the object.

checkdb and checktable

The dbce checkdb and dbce checktable commands check the page chains
for atable, building the look-ahead set in the same way as other sequential
scans.

If the table being checked has nonclustered indexes, they are scanned
recursively, starting at the root page and following all pointersto the data
pages. When checking the pointers from the leaf pages to the data pages,
the dbcc commands use asynchronous prefetch in away that is similar to
nonclustered index scans. When aleaf-level index page is accessed, the
look-ahead set is built from the page | Ds of all the pagesreferenced onthe
leaf-level index page.

Look-ahead set minimum and maximum sizes

606

The size of alook-ahead set for a query at agiven pointintimeis
determined by several factors:

e Thetype of query, such as a sequentia scan or a nonclustered index
scan

« Thesize of the pools used by the objects that are referenced by the
query and the prefetch limit set on each pool

« Thefragmentation of tables or indexes, in the case of operations that
perform scans

e Therecent success rate of asynchronous prefetch requests and
overload conditions on /O queues and server 1/0O limits

Table 25-1 summarizes the minimum and maximum sizes for different
type of asynchronous prefetch usage.

CHAPTER 25 Tuning Asynchronous Prefetch

Table 25-1: Look-ahead set sizes

Access type

Action

Look-ahead set sizes

Table scan
Clustered index scan
Covered leaf level scan

Reading apage froma
new allocation unit

Minimum is 8 pages needed by the query
Maximum is the smaller of:

¢ Thenumber of pages on an allocation unit that
belong to an object (at 2K, maximum is 255;
256 minus the alocation page).

e Thepool prefetch limits

Nonclustered index scan

Locating qualified
rows on the leaf page
and preparing to

Minimum is 2 qualified rows
Maximum is the smaller of:
¢ The number of unique page numbers on

access data pages qualified rows on the leaf index page
e Thepool’s prefetch limit
Recovery Recovering a Maximum isthe smaller of:
transaction « All of the data and index pages touched by a
transaction undergoing recovery
e The prefetch limit of the pool in the default
data cache
Scanning the Maximum is all pages on an alocation unit
transaction log belonging to thelog
dbcc tablealloc, indexalloc, and Scanning the page Same as table scan
checkalloc chain
dbcc checktable and checkdb Scanning the page Same as table scan
chain
Checking All of the data pages referenced on alesf level
nonclustered index page.
links to data pages

When prefetch is automatically disabled

Asynchronous prefetch attempts to fetch needed pages into buffer pools
without flooding the pools or the 1/0 subsystem and without reading
unneeded pages. If Adaptive Server detectsthat prefetched pages are
being read into cache but not used, it temporarily limits or discontinues

asynchronous prefetch.

607

When prefetch is automatically disabled

Flooding pools

For each poal in the data caches, a configurable percentage of buffers can
be read in by asynchronous prefetch and held until their first use. For
example, if a2K pool has 4000 buffers, and the limit for the pool is 10
percent, then, at most, 400 buffers can beread in by asynchronous prefetch
and remain unused in the pool. If the number of nonaccessed prefetched
buffersin the pool reaches 400, Adaptive Server temporarily discontinues
asynchronous prefetch for that pool.

Asthe pagesin the pool are accessed by queries, the count of unused
buffersin the pool drops, and asynchronous prefetch resumes operation. |f
the number of available buffersis smaller than the number of buffersinthe
look-ahead set, only that many asynchronous prefetches are issued. For
example, if 350 unused buffersarein apool that allows400, and aquery’s
look-ahead set is 100 pages, only the first 50 asynchronous prefetches are
issued.

This keeps multiple asynchronous prefetch requests from flooding the
pool with requests that flush pages out of cache before they can be read.
The number of asynchronous|/Osthat cannot beissued dueto the per-pool
limitsis reported by sp_sysmon.

I/O system overloads

608

Adaptive Server and the operating system place limits on the number of
outstanding I/Os for the server as awhole and for each engine. The
configuration parameters max async i/os per server and max async i/os per
engine control theselimitsfor Adaptive Server. See your operating system
documentation for more information on configuring them for your
hardware.

The configuration parameter disk i/o structures controlsthe number of disk
control blocks that Adaptive Server reserves. Each physical 1/0 (each
buffer read or written) requires one control block whileit isin the I/O
queue.

See the System Administration Guide.

CHAPTER 25 Tuning Asynchronous Prefetch

Unnecessary reads

If Adaptive Server triestoissue asynchronous prefetch requeststhat would
exceed max async i/os per server, max async i/os per engine, or disk i/o
structures, it issues enough requests to reach the limit and discards the
remaining requests. For example, if only 50 disk 1/O structures are
available, and the server attempts to prefetch 80 pages, 50 requests are
issued, and the other 30 are discarded.

sp_sysmon reports the number of times these limits are exceeded by
asynchronous prefetch requests. See “ Asynchronous prefetch activity
report” on page 978.

Asynchronous prefetch tries to avoid unnecessary physical reads. During
recovery and during nonclustered index scans, |ook-ahead sets are exact,
fetching only the pages referenced by page number in the transaction log
or on index pages.

L ook-ahead setsfor tablescans, clustered index scans, and dbcc checksare
more speculative and may lead to unnecessary reads. During sequential
scans, unnecessary 1/0 can take place due to:

» Page chain fragmentation on all pages-locked tables

» Heavy cache utilization by multiple users

Page chain fragmentation

Adaptive Server's page allocation mechanism strives to keep pages that
belong to the same object close to each other in physical storage by
allocating new pages on an extent already allocated to the object and by
allocating new extents on allocation units already used by the object.

However, as pages are alocated and deall ocated, page chains on data-
only-locked tables can develop kinks. Figure 25-1 shows an example of a
kinked page chain between extents in two allocation units.

609

When prefetch is automatically disabled

610

Figure 25-1: A kink in a page chain crossing allocation units

0.23456?L

8

o 10| | 2113|1415

16

17018 119 20| 21|22 |23

24

25/ 26 |27 |28 29|30 |31

/ : Pages used by object

248

249 250(251|252|253(254|255 . OAM page

|

256

2#37 258|259|260|261|262|263

Allocation page

264

272

#65 266(267(268|269|270|271 Other pages

273|274|275|276|277|278|279

280

281(282|283|284|285|286|287

504

505(506|507|508|509 (510|511

In Figure 25-1, when a scan first needs to access a page from allocation
unit 0, it checks the allocation page and issues asynchronous 1/Os for all
the pages used by the object it is scanning, up to the limit set on the pool.
Asthe pagesbecome availablein cache, the query processesthem in order
by following the page chain. When the scan reaches page 10, the next page
in the page chain, page 273, belongs to allocation unit 256.

When page 273 is needed, allocation page 256 is checked, and
asynchronous prefetch requests are issued for all the pagesin that
allocation unit that belong to the object.

When the page chain points back to a page in alocation unit O, there are
two possibilities:

* The prefetched pages from allocation unit 0 are till in cache, and the
query continues processing with no unneeded physical 1/0s.

CHAPTER 25 Tuning Asynchronous Prefetch

¢ The prefetch pagesfrom allocation unit 0 have been flushed from the
cache by the reads from allocation unit 256 and other 1/Os taking
place by other queries that use the pool. The query must reissue the
prefetch requests. This condition is detected in two ways:

e Adaptive Server’s count of the hops between allocation pages
now equals two. It uses the ratio between the count of hops and
the prefetched pages to reduce the size of the look-ahead set, so
fewer 1/Os areissued.

e Thecount of prefetched but unused pagesin the pool islikely to
be high, so asynchronous prefetch may be temporarily
discontinued or reduced, based on the pool’s limit.

Tuning Goals for Asynchronous Prefetch

Choosing optimal pool sizesand prefetch percentagesfor buffer pools can
be key to achieving improved performance with asynchronous prefetch.
When multiple applications are running concurrently, a well-tuned
prefetching system balances pool sizes and prefetch limits to accomplish
these goals:

* Improved system throughput
» Better performance by applications that use asynchronous prefetch

» No performance degradation in applications that do not use
asynchronous prefetch

Configuration changes to pool sizes and the prefetch limits for pools are
dynamic, allowing you to make changes to meet the needs of varying
workloads. For example, you can configure asynchronous prefetch for
good performance during recovery or docc checking and reconfigure
afterward without needing to restart Adaptive Server.

See “ Setting limits for recovery” on page 615 and “ Setting limits for
dbcc” on page 616 for more information.

611

Other Adaptive Server performance features

Commands for configuration

Asynchronous prefetch limits are configured as a percentage of the pool in
which prefetched but unused pages can be stored. There are two
configuration levels:

* The server-wide default, set with the configuration parameter global
async prefetch limit. When you first install, the default value for global
async prefetch limit is 10 (percent).

For more information, see of the System Administration Guide.

e A per-pool override, set with sp_poolconfig. To see the limits set for
each pool, use sp_cacheconfig.

For more information, see of the System Administration Guide.

Changing asynchronous prefetch limitstakes effect immediately, and does
not require areboot. Both the global and per-pool limits can aso be
configured in the configuration file.

Other Adaptive Server performance features

Large I/O

612

This section covers the interaction of asynchronous prefetch with other
Adaptive Server performance features.

The combination of large I/O and asynchronous prefetch can provide rapid
query processing with low 1/0O overhead for queries performing table scans
and for dbcc operations.

Whenlargel/O prefetchesall the pages on an all ocation unit, the minimum
number of I/Osfor the entire allocation unit is:

 3116K I/Os
e 72K 1/Os, for the pages that share an extent with the allocation page

CHAPTER 25 Tuning Asynchronous Prefetch

Sizing and limits for the 16k pool

Limits for the 2K pool

Performing 31 16K prefetches with the default asynchronous prefetch
limit of 10 percent of the buffersin the pool requires a pool with at least
310 16K buffers. If the pool issmaller, or if the limit islower, some
prefetch requests will be denied. To allow more asynchronous prefetch
activity in the pool, you can configure alarger pool or alarger prefetch
limit for the pool.

If multiple overlapping queries perform table scans using the same pool,
the number of unused, prefetched pages allowed in the poll needsto be
higher. The queries are probably issuing prefetch requests at slightly
staggered times and are at different stages in reading the accessed pages.
For example, one query may have just prefetched 31 pages, and have 31
unused pages in the pool, while an earlier query has only 2 or 3 unused
pages left. To start your tuning efforts for these queries, assume one-half
the number of pages for a prefetch request multiplied by the number of
active queriesin the pool.

Queries using large 1/0 during sequential scans may still need to perform
2K 1/0:

¢ When ascan entersanew allocation unit, it performs 2K [/O onthe 7
pages in the unit that share space with the allocation page.

e If pagesfrom the allocation unit already reside in the 2K pool when
the prefetch requests are issued, the pages that share that extent must
be read into the 2K poal.

If the 2K pool hasits asynchronous prefetch limit set to O, thefirst 7 reads
are performed by normal asynchronous I/0O, and the query sleeps on each
read if the pagesare not in cache. Set thelimitsonthe 2K pool high enough
that it does not slow prefetching performance.

613

Other Adaptive Server performance features

Fetch-and-discard (MRU) scans

When a scan uses MRU replacement policy, buffersare handled in a
special manner when they are read into the cache by asynchronous
prefetch. First, pages are linked at the MRU end of the chain, rather than
at the wash marker. When the query accesses the page, the buffers arere
linked into the pool at the wash marker. This strategy helpsto avoid cases
where heavy use of a cache flushes prefetched buffers linked at the wash
marker beforethey can be used. It haslittleimpact on performance, unless
large numbers of unneeded pages are being prefetched. In this case, the
prefetched pages are more likely to flush other pages from cache.

Parallel scans and large 1/Os

Hash-based table scans

614

The demand on buffer pool s can become higher with parallel queries. With
serial queries operating on the same pools, it is safe to assumethat queries
areissued at slightly different times and that the queries are in different
stages of execution: some are accessing pages are aready in cache, and
others are waiting on 1/0O.

Parallel execution places different demands on buffer pools, depending on
the type of scan and the degree of parallelism. Some parallel queries are
likely to issue alarge number of prefetch requests simultaneoudly.

Hash-based table scans on allpages-locked tables have multiple worker
processes accessi ng the same page chain. Each worker process checksthe
page ID of each page in the table, but examines only the rows on those
pages where page |D matches the hash value for the worker process.

The first worker process that needs a page from a new allocation unit
issues a prefetch request for all pages from that unit. When the scans of
other worker processes also need pages from that all ocation unit, they will
either find that the pages they need are already in I/O or already in cache.
Asthe first scan to complete enters the next unit, the processis repeated.

Aslong as oneworker processin the family performing ahash-based scan
does not become stalled (waiting for alock, for example), the hash-based
table scans do not place higher demands on the pools than they place on
serial processes. Since the multiple processes may read the pages much
more quickly than aserial processdoes, they changethe status of the pages
from unused to used more quickly.

CHAPTER 25 Tuning Asynchronous Prefetch

Partition-based scans

Partition-based scans are more likely to create additional demands on
pools, since multiple worker processes may be performing asynchronous
prefetching on different all ocation units. On partitioned tables on multiple
devices, the per-server and per-engine I/O limits are less likely to be
reached, but the per-pool limits are more likely to limit prefetching.

Once a parallel query is parsed and compiled, it launchesits worker
processes. If atable with 4 partitionsis being scanned by 4 worker
processes, each worker process attemptsto prefetch all the pagesinitsfirst
allocation unit. For the performance of this single query, the most
desirable outcome is that the size and limits on the 16K pool are
sufficiently large to allow 124 (31* 4) asynchronous prefetch requests, so
all of the requests succeed. Each of the worker processes scans the pages
in cache quickly, moving onto new allocation units and issuing more
prefetch requests for large numbers of pages.

Special settings for asynchronous prefetch limits

You may want to change asynchronous prefetch configuration temporarily
for specific purposes, including:

* Recovery

» dbcc operations that use asynchronous prefetch

Setting limits for recovery

During recovery, Adaptive Server usesonly the 2K pool of the default data
cache. If you shut down the server using shutdown with nowait, or if the
server goes down due to power failure or machine failure, the number of
log records to be recovered may be quite large.

To speed recovery, you can edit the configuration file to do one or both of
the following:

» Increasethesize of the 2K pool in the default data cache by reducing
the size of other poolsin the cache

» Increase the prefetch limit for the 2K pool

615

Maintenance activities for high prefetch performance

Both of these configuration changes are dynamic, so you can use
sp_poolconfig to restore the original values after recovery compl etes,
without restarting Adaptive Server. The recovery process allows usersto
log into the server as soon as recovery of the master database is complete.
Databases are recovered one at atime and users can begin using a
particular database as soon asit is recovered. There may be some
contention if recovery is still taking place on some databases, and user
activity in the 2K pool of the default data cache is heavy.

Setting limits for dbcc

If you are performing database consistency checking at atime when other
activity on the server is low, configuring high asynchronous prefetch
limits on the pools used by dbcc can speed consistency checking.

dbcc checkalloc can use special internal 16K buffersif thereisno 16K pool
in the cache for the appropriate database. If you have a 2K pool for a
database, and no 16K pool, set the local prefetch limit to O for the pool
while executing dbcc checkalloc. Use of the 2K pool instead of the 16K
internal buffers may actually hurt performance.

Maintenance activities for high prefetch performance

616

Page chains for all pages-locked tables and the leaf levels of indexes
develop kinks as data modifications take place on the table. In general,
newly created tables have few kinks. Tables where updates, deletes, and
inserts that have caused page splits, new page allocations, and page
deallocations are likely to have cross-allocation unit page chain kinks. If
more than 10 to 20 percent of the original rows in atable have been
modified, you should determine if kinked page chains are reducing
asynchronous prefetch effectiveness. If you suspect that page chain kinks
are reducing asynchronous prefetch performance, you may need to re-
create indexes or reload tables to reduce kinks.

CHAPTER 25 Tuning Asynchronous Prefetch

Eliminating kinks in

Eliminating kinks in

Eliminating kinks in

heap tables

For allpages-locked heaps, page allocation is generally sequential, unless
pages are deallocated by deletes that remove al rows from apage. These
pages may be reused when additional spaceisallocated to the object. You
can create a clustered index (and drop it, if you want the table stored as a
heap) or bulk copy the data out, truncate the table, and copy the datain
again. Both activities compress the space used by the table and eliminate
page-chain kinks.

clustered index tables

For clustered indexes, page splits and page deallocations can cause page
chain kinks. Rebuilding clustered indexes does not necessarily eliminate
all cross-all ocation page linkages. Usefillfactor for clustered indexeswhere
you expect growth, to reduce the number of kinks resulting from data
modifications.

nonclustered indexes

If your query mix uses covered index scans, dropping and re-creating
nonclustered indexes can improve asynchronous prefetch performance,
once the leaf-level page chain becomes fragmented.

Performance monitoring and asynchronous prefetch

The output of statistics io reports the number physical reads performed by
asynchronous prefetch and the number of reads performed by normal
asynchronous /0. In addition, statistics io reports the number of timesthat
a search for apage in cache was found by the asynchronous prefetch
without holding the cache spinlock.

See “Reporting physical and logical 1/0 statistics’ on page 763 for more
information.

sp_sysmon report contains information on asynchronous prefetch in both
the “ Data Cache Management” section and the “Disk 1/O Management”
section.

617

Performance monitoring and asynchronous prefetch

If you are using sp_sysmon to evaluate asynchronous prefetch
performance, you may seeimprovementsin other performance areas, such
as.

e Much higher cache hit ratios in the pools where asynchronous
prefetch is effective

« A corresponding reduction in context switches due to cache misses,
with voluntary yieldsincreasing

e A possible reduction in lock contention. Tasks keep pages |ocked
during the time it takes for perform 1/O for the next page needed by
the query. If thistime is reduced because asynchronous prefetch
increases cache hits, locks will be held for a shorter time.

See “Data cache management” on page 973 and “ Disk 1/0O management
on page 994 for more information.

618

CHAPTER 26

tempdb Performance Issues

This chapter discusses the performance issues associated with using the
tempdb database. tempdb is used by Adaptive Server users. Anyone can
create objectsintempdb. Many processesuseit silently. Itisaserver-wide
resource that is used primarily for internal sorts processing, creating
worktables, reformatting, and for storing temporary tables and indexes
created by users.

Many applications use stored procedures that create tables in tempdb to
expedite complex joins or to perform other complex data analysisthat is
not easily performed in asingle step.

Topic Page
How management of tempdb affects performance 619
Types and uses of temporary tables 620
Initial allocation of tempdb 622
Sizing the tempdb 623
Placing tempdb 624
Dropping the master Device from tempdb segments 624
Binding tempdb to its own cache 625
Temporary tables and locking 626
Minimizing logging in tempdb 627
Optimizing temporary tables 628

How management of tempdb affects performance

Good management of tempdb is critical to the overall performance of
Adaptive Server. tempdb cannot be overlooked or left in adefault state. It
isthe most dynamic database on many servers and should receive special
attention.

If planned for in advance, most problems related to tempdb can be
avoided. These are the kinds of things that can go wrong if tempdb is not
sized or placed properly:

619

Types and uses of temporary tables

tempdb fills up frequently, generating error messages to users, who
must then resubmit their queries when space becomes available.

Sorting is slow, and users do not understand why their queries have
such uneven performance.

User queries are temporarily locked from creating temporary tables
because of locks on system tables.

Heavy use of tempdb objects flushes other pages out of the data cache.

Main solution areas for tempdb performance

These main areas can be addressed easily:

Sizing tempdb correctly for all Adaptive Server activity
Placing tempdb optimally to minimize contention
Binding tempdb to its own data cache

Minimizing the locking of resources within tempdb

Types and uses of temporary tables

The use or misuse of user-defined temporary tables can greatly affect the
overall performance of Adaptive Server and your applications.

620

Temporary tables can be quite useful, often reducing the work the server
has to do. However, temporary tables can add to the size requirement of
tempdb. Some temporary tables are truly temporary, and others are
permanent.

tempdb is used for three types of tables:

Truly temporary tables
Regular user tables
Worktables

CHAPTER 26 tempdb Performance Issues

Truly temporary tables

Regular user tables

You can create truly temporary tables by using “#” asthefirst character of
the table name:

create table #tenptable (...)

or:
sel ect select_list
into #tenptable ...
Temporary tables:

» Exist only for the duration of the user session or for the scope of the
procedure that creates them

e Cannot be shared between user connections

» Areautomatically dropped at the end of the session or procedure (or
can be dropped manually)

When you create indexes on temporary tables, the indexes are stored in
tempdb:

create index tenpix on #tenptabl e(col 1)

You can create regular user tables in tempdb by specifying the database
name in the command that creates the table;

create table tenpdb..tenptable (...)
or:

sel ect select_list
into tempdb. . tenptabl e

Regular user tables in tempdb:

e Can persist across sessions

e Can be used by bulk copy operations

» Can be shared by granting permissions on them

* Must beexplicitly dropped by the owner (otherwise, they areremoved
when Adaptive Server is restarted)

You can create indexes in tempdb on permanent temporary tables:

621

Initial allocation of tempdb

create index tenpix on tenpdb..tenptabl e(col 1)

Worktables

Worktables are automatically created in tempdb by Adaptive Server for
merge joins, sorts, and other internal server processes. These tables:

* Arenever shared

» Disappear as soon as the command completes

Initial allocation of tempdb

When you install Adaptive Server, tempdb is 2MB, and is located
completely on the master device, as shown in Figure 26-1. Thisis
typically the first database that a System Administrator needs to make
larger. The more users on the server, the larger it needsto be. It can be
altered onto the master device or other devices. Depending on your needs,
you may want to stripe tempdb across several devices.

Figure 26-1: tempdb default allocation
tempdb

data and log
(2MB)

d_master

Usesp_helpdb to seethe size and status of tempdb. The following example
shows tempdb defaults at installation time:

sp_hel pdb tenpdb

nane db_size owner dbid created st at us

tempdb 2.0 M8 sa 2 My 22, 1999 select intofbul kcopy
device_frag size usage free kbytes

master 2.0 M8 data and log 1248

622

CHAPTER 26 tempdb Performance Issues

Sizing the tempdb

tempdb needsto be big enough to handlethe following processesfor every
concurrent Adaptive Server user:

Worktables for merge joins

Worktables that are created for distinct, group by, and order by, for
reformatting, and for the OR strategy, and for materializing some
views and subqueries

Temporary tables (those created with “#” asthefirst character of their
names)

Indexes on temporary tables
Regular user tablesin tempdb
Procedures built by dynamic SQL

Some applications may perform better if you use temporary tablesto split
up multitable joins. This strategy is often used for:

Cases where the optimizer does not choose a good query plan for a
guery that joins more than four tables

Queriesthat join avery large number of tables
Very complex queries

Applications that need to filter data as an intermediate step

You might also use tempdb to:

Denormalize several tablesinto afew temporary tables

Normalize a denormalized table to do aggregate processing

For most applications, make tempdb 20 to 25% of the size of your user
databases to provide enough space for these uses.

623

Placing tempdb

Placing tempdb

Keep tempdb on separate physical disks from your critical application
databases. Use the fastest disks available. If your platform supports solid
state devicesand your tempdb useisabottleneck for your applications, use
those devices. After you expand tempdb onto additional devices, drop the
master device from the system, default, and logsegment segments.

Although you can expand tempdb on the same device as the master
database, Sybase suggests that you use separate devices. Also, remember
that logical devices, but not databases, are mirrored using Adaptive Server
mirroring. If you mirror the master device, you create amirror of all
portions of the databases that reside on the master device. If the mirror
uses serial writes, this can have a serious performance impact if your
tempdb database is heavily used.

Dropping the master Device from tempdb segments

By default, the system, default, and logsegment segments for tempdb
include its 2MB allocation on the master device. When you allocate new
devicesto tempdb, they automatically become part of al three segments.
Once you allocate a second device to tempdb, you can drop the master
device from the default and logsegment segments. This way, you can be
sure that the worktables and other temporary tables in tempdb do not
contend with other uses on the master device.

To drop the master device from the segments:

1 Altertempdb onto another device, if you have not already done so. For
example:

al ter database tenpdb on tune3 = 20

2 Issue ause tempdb command, and then drop the master device from
the segments:

sp_dropsegnent "default", tenpdb, master
sp_dropdegnent system tenpdb, master
sp_dropdegnent | ogsegnent, tenpdb, naster

3 To verify that the default segment no longer includes the master
device, issue this command:

sel ect dbid, nane, segmap

624

CHAPTER 26 tempdb Performance Issues

from sysusages, sysdevices

wher e sysdevi ces. | ow <= sysusages. si ze + vstart
and sysdevi ces. hi gh >= sysusages.size + vstart -1
and dbid = 2
and (status = 2 or status = 3)

The segmap column should report “1” for any allocations on the
master device, indicating that only the system segment still usesthe

device:
dbid nane segnmap
2 master 1
2 tune3 7

Using multiple disks for parallel query performance

If tempdb spans multiple devices, as shown in Figure 26-2, you can take
advantage of parallel query performance for some temporary tables or
worktables.

Figure 26-2: tempdb spanning disks
d_master

tempdb tempdb

Binding tempdb to its own cache

Under normal Adaptive Server use, tempdb makes heavy use of the data
cache as temporary tables are created, populated, and then dropped.

625

Temporary tables and locking

Assigning tempdb to its own data cache:

« Keepsthe activity on temporary objects from flushing other objects
out of the default data cache

e Helps spread /0 between multiple caches

See “Examining cache needs for tempdb” on page 320 for more
information.

Commands for cache binding

Use sp_cacheconfig and sp_poolconfig to create named data caches and to
configure pools of agiven sizefor large1/O. Only a System Administrator
can configure caches and pools.

For instructions on configuring named caches and pools, see the System
Administration Guide.

Once the caches have been configured, and the server has been restarted,
you can bind tempdb to the new cache:

sp_bi ndcache "tenpdb_cache", tenpdb

Temporary tables and locking

Creating or dropping temporary tables and their indexes can cause lock
contention on the system tables in tempdb. When users create tablesin
tempdb, information about the tables must be stored in system tables such
as sysobjects, syscolumns, and sysindexes. |f multiple user processes are
creating and dropping tablesin tempdb, heavy contention can occur on the
system tables. Worktables created internally do not store information in
system tables.

If contention for tempdb system tables is a problem with applications that
must repeatedly create and drop the same set of temporary tables, try
creating the tables at the start of the application. Then useinsert...select to
populate them, and truncate table to remove all the data rows. Although
insert...select requireslogging and is slower than select into, it can provide
asolution to the locking problem.

626

CHAPTER 26 tempdb Performance Issues

Minimizing logging in tempdb

With select into

Even though the trunc log on checkpoint database option isturned onin
tempdb, changesto tempdb are still written to the transaction log. You can
reduce log activity in tempdb by:

» Using select into instead of create table and insert

» Selecting only the columns you need into the temporary tables

When you create and popul ate temporary tables in tempdb, use the select
into command, rather than create table and insert...select, whenever
possible. The select into/bulkcopy database option is turned on by default
in tempdb to enable this behavior.

select into operations are faster because they are only minimally logged.
Only theallocation of data pagesistracked, not the actual changesfor each
datarow. Each datainsert in an insert...select query is fully logged,
resulting in more overhead.

By using shorter rows

If the application creating tables in tempdb uses only afew columns of a
table, you can minimize the number and size of log records by:

e Sdlecting just the columns you need for the application, rather than
using select * in queries that insert data into the tables

e Limiting the rows selected to just the rows that the applications
requires

Both of these suggestions also keep the size of the tables themselves
smaller.

627

Optimizing temporary tables

Optimizing temporary tables

628

Many uses of temporary tables are simple and brief and requirelittle
optimization. But if your applications require multiple accesses to tables
in tempdb, you should examine them for possible optimization strategies.
Usually, thisinvolves splitting out the creation and indexing of the table
from the access to it by using more than one procedure or batch.

When you create atable in the same stored procedure or batch whereit is
used, the query optimizer cannot determine how largethetableis, thetable
has not yet been created when the query is optimized, as shown in

Figure 26-3. Thisappliesto both temporary tablesand regular user tables.

Figure 26-3: Optimizing and creating temporary tables

Parse and
Normalize

Query optimized here Optimize

Compile

Table created here Execute

The optimizer assumesthat any such table has 10 data pages and 100 rows.
If thetableisreally |arge, this assumption can |ead the optimizer to choose
asuboptimal query plan.

These two techniques can improve the optimization of temporary tables:

e Creating indexes on temporary tables

CHAPTER 26 tempdb Performance Issues

e Breaking complex use of temporary tablesinto multiple batches or
procedures to provide information for the optimizer

Creating indexes on temporary tables

You can define indexes on temporary tables. In many cases, these indexes
can improve the performance of queries that use tempdb. The optimizer
uses these indexes just like indexes on ordinary user tables. The only
requirements are:

» Thetable must contain data when the index is created. If you create
the temporary table and create the index on an empty table, Adaptive
Server does not create column statistics such as histograms and
densities. If you insert data rows after creating the index, the
optimizer has incomplete statistics.

» Theindex must exist whilethe query using it isoptimized. You cannot
create an index and then use it in a query in the same batch or
procedure.

» Theoptimizer may choose asuboptimal plan if rows have been added
or deleted since the index was created or since update statistics was
run.

Providing an index for the optimizer can greatly increase performance,
especially in complex procedures that create temporary tables and then
perform numerous operations on them.

Creating nested procedures with temporary tables

You need to take an extra step to create the procedures described above.
You cannot create base_proc until select_proc exists, and you cannot
create select_proc until the temporary table exists. Here are the steps:

1 Createthe temporary table outside the procedure. It can be empty; it
just needsto exist and to have columns that are compatible with
select_proc:

select * into #huge_result from... where 1 = 2
2 Createthe procedure select_proc, as shown above.

3 Drop #huge_result.

629

Optimizing temporary tables

4 Create the procedure base_proc.

Breaking tempdb uses into multiple procedures
For example, this query causes optimization problems with #huge_resuilt:

create proc base_proc
as
sel ect *
i nto #huge_result
from...
sel ect *
fromtab,
#huge_result where ...

You can achieve better performance by using two procedures. When the
base_proc procedure calls the select_proc procedure, the optimizer can
determine the size of the table:

create proc sel ect_proc
as

sel ect *
fromtab, #huge_result where ...

create proc base_proc
as
sel ect *
into #huge_result
from...
exec sel ect_proc

If the processing for #huge_result requires multiple accesses, joins, or
other processes, such as looping with while, creating an index on
#huge_result may improve performance. Create the index in base_proc so

that it is available when select_proc is optimized.

630

CHAPTER 27 Cursors and Performance

This chapter discusses performance issues related to cursors. Cursors are
amechanism for accessing the results of a SQL select statement one row
at atime (or several rows, if you use set cursors rows). Since cursors use
adifferent model from ordinary set-oriented SQL, the way cursors use
memory and hold locks has performance implications for your
applications. In particular, cursor performance issues includes locking at
the page and at the table level, network resources, and overhead of
processing instructions.

Topic Page
Definition 631
Resources required at each stage 634
Cursor modes 637
Index use and requirements for cursors 637
Comparing performance with and without cursors 639
L ocking with read-only cursors 642
Isolation levels and cursors 644
Partitioned heap tables and cursors 644
Optimizing tips for cursors 645

Definition

A cursor isa symbolic name that is associated with a select statement. It
enables you to access the results of aselect statement one row at atime.
Figure 27-1 shows a cursor accessing the authors table.

631

Definition

Cursor with select * from authors

where state = 'KY’

Programming can:
- Examine a row

Figure 27-1: Cursor example

Result set
= A978606525 Marcello Duncan KY

> A937406538 Carton Nita KY
- A1525070956 Porczyk Howard KY

A913907285 Bier Lane KY

- Take an action based on row values

You can think of acursor asa“handle’ on the result set of aselect
statement. It enables you to examine and possibly manipulate one row at
atime.

Set-oriented versus row-oriented programming

632

SQL was conceived as a set-oriented language. Adaptive Server is
extremely efficient when it works in set-oriented mode. Cursors are
required by ANSI SQL standards; when they are needed, they are very
powerful. However, they can have a negative effect on performance.

For example, this query performs the identical action on all rows that
match the condition in the where clause:

update titles
set contract =1
where type = 'business’

The optimizer finds the most efficient way to perform the update. In
contrast, a cursor would examine each row and perform single-row
updatesif the conditions were met. The application declaresa cursor for a
select statement, opens the cursor, fetches arow, processesit, goes to the
next row, and so forth. The application may perform quite different
operations depending on the values in the current row, and the server’s
overall use of resources for the cursor application may be less efficient
than the server’s set level operations. However, cursors can provide more
flexibility than set-oriented programming.

Figure 27-2 shows the stepsinvolved in using cursors. The function of
cursorsisto get to the middle box, where the user or application code
examines arow and decides what to do, based on its values.

CHAPTER 27 Cursors and Performance

Figure 27-2: Cursor flowchart

C Declarev cursor)

— > < Open cursor)
— 5 Fetch row >

Process row

(Examine/Update/Delete)

Y

Yes

Close cursor

< Deallocate cursor)

{

Example

Here isasimple example of acursor with the “Process Rows’ step shown
above in pseudocode;

decl are biz_book cursor
for select * fromtitles
where type = 'business’
go
open bi z_book
go
fetch biz_book
go
/* Look at each row in turn and perform
** various tasks based on val ues,

633

Resources required at each stage

** and repeat fetches, until
** there are no nore rows

*/

cl ose bi z_book

go

deal | ocate cursor biz_book
go

Depending on the content of the row, the user might del ete the current row:
delete titles where current of biz_book
or update the current row:

update titles set title="The Rich
Executive' s Database Cuide"
where current of biz book

Resources required at each stage

634

Cursors use memory and require locks on tables, data pages, and index
pages. When you open a cursor, memory is allocated to the cursor and to
store the query plan that is generated. While the cursor is open, Adaptive
Server holds intent table locks and sometimes row or page locks.

Figure 27-3 shows the duration of locks during cursor operations.

CHAPTER 27 Cursors and Performance

Figure 27-3: Resource use by cursor statement

(Declare cursor)
— (Open cursor)
—> (Fetch row)
Process row
(Examine/Update/Delete) Table
Row locks
or (intent); Memory
Yes page Some
locks fow or
age
NoO pag
locks
—(Close cursor)

v

(Deallocate cursor)

The memory resource descriptionsin Figure 27-3 and Table 27-1 refer to
ad hoc cursorsfor queries sent by isql or Client-Library™. For other kinds
of cursors, the locks are the same, but the memory allocation and
deallocation differ somewhat depending on the type of cursor being used,
as described in “Memory use and execute cursors’ on page 636.

635

Resources required at each stage

Table 27-1: Locks and memory use for isql and Client-Library client

cursors

Cursor
command

Resource use

declare cursor

When you declare a cursor, Adaptive Server uses only
enough memory to store the query text.

open

When you open a cursor, Adaptive Server alocates
memory to the cursor and to store the query plan that is
generated. The server optimizes the query, traverses
indexes, and sets up memory variables. The server does not
access rows yet, unless it needs to build worktables.
However, it does set up therequired table-level locks (intent
locks). Row and page locking behavior depends on the
isolation level, server configuration, and query type.

See System Administration Guide for more information.

fetch

When you execute afetch, Adaptive Server getsthe row(s)
required and reads specified valuesinto the cursor variables
or sends the row to the client. If the cursor needs to hold
lock on rowsor pages, the locksare held until afetch moves
the cursor off the row or page or until the cursor is closed.
Thelock is either ashared or an update lock, depending on
how the cursor iswritten.

close

When you closeacursor, Adaptive Server releasesthelocks
and some of the memory allocation. You can open the
cursor again, if necessary.

deallocate cursor

When you deall ocate a cursor, Adaptive Server releasesthe
rest of the memory resources used by the cursor. To reuse
the cursor, you must declare it again.

Memory use and execute cursors

The descriptions of declare cursor and deallocate cursor in Table 27-1 refer
to ad hoc cursors that are sent by isqgl or Client-Library. Other kinds of
cursors allocate memory differently:

636

For cursors that are declared on stored procedures, only a small
amount of memory is allocated at declare cursor time. Cursors
declared on stored procedures are sent using Client-Library or the
precompiler and are known as execute cursors.

For cursors declared within a stored procedure, memory is already
available for the stored procedure, and the declare statement does not
require additional memory.

CHAPTER 27 Cursors and Performance

Cursor modes

There are two cursor modes: read-only and update. As the names suggest,
read-only cursors can only display datafrom a select statement; update
cursors can be used to perform positioned updates and deletes.

Read-only mode uses shared page or row locks. If read committed with lock
isset to 0, and the query runs at isolation level 1, it usesinstant duration
locks, and does not hold the page or row locks until the next fetch.

Read-only mode isin effect when you specify for read only or when the
cursor’s select statement uses distinct, group by, union, or aggregate
functions, and in some cases, an order by clause.

Update mode uses update page or row locks. It isin effect when:
* You specify for update.

* The select statement does not include distinct, group by, union, a
subquery, aggregate functions, or the at isolation read uncommitted
clause.

* You specify shared.
If column_name list is specified, only those columns are updatable.

For more information on locking during cursor processing, see System
Administration Guide.

Specify the cursor mode when you declare the cursor. If the select
statement includes certain options, the cursor is not updatable even if you
declareit for update.

Index use and requirements for cursors

When aquery isusedinacursor, it may require or choose different indexes
than the same query used outside of a cursor.

Allpages-locked tables

For read-only cursors, queries at isolation level O (dirty reads) require a
unique index. Read-only cursors at isolation level 1 or 3 should produce
the same query plan as the select statement outside of a cursor.

637

Index use and requirements for cursors

Theindex requirements for updatabl e cursors mean that updatabl e cursors
may use different query plansthan read-only cursors. Update cursors have
these indexing requirements:

e |f thecursor isnot declared for update, a unique index is preferred
over atable scan or a nonunique index.

e |f thecursor isdeclared for update without afor update of list, aunique
index isrequired on allpages-locked tables. An error israised if no
unique index exists.

e |f thecursor is declared for update with afor update of list, then only
auniqueindex without any columnsfrom thelist can be chosen onan
allpages-locked table. An error israised if no unique index qualifies.

When cursors are involved, an index that containsan IDENTITY column
is considered unique, even if the index is not declared unique. In some
cases, IDENTITY columns must be added to indexes to make them
unique, or the optimizer might be forced to choose a suboptimal query
plan for a cursor query.

Data-only-locked tables

In data-only-locked tables, fixed row | Dsare used to position cursor scans,
so uniqueindexesare not required for dirty readsor updatable cursors. The
only cause for different query plansin updatable cursorsisthat table scans
are used if columnsfrom only useful indexes areincluded in the for update
of list.

Table scans to avoid the Halloween problem

638

The Halloween problem isan update anomaly that can occur when aclient
using a cursor updates a column of the cursor result-set row, and that
column definesthe order in which therowsarereturned from the table. For
example, if acursor was to use an index on last_name, first_name, and
update one of these columns, the row could appear in the result set a
second time.

To avoid the Halloween problem on data-only-locked tables, Adaptive
Server chooses a table scan when the columns from an otherwise useful
index are included in the column list of afor update clause.

CHAPTER 27 Cursors and Performance

For implicitly updatable cursors declared without afor update clause, and
for cursors where the column list in the for update clauseis empty, cursors
that update a column in the index used by the cursor may encounter the
Halloween problem.

Comparing performance with and without cursors

This section examines the performance of a stored procedure written two
different ways:

» Without a cursor — this procedure scans the table three times,
changing the price of each book.

» With acursor —this procedure makes only one pass through the table.

In both examples, there is a unique index on titles(title_id).

Sample stored procedure without a cursor
Thisis an example of a stored procedure without cursors:

/* Increase the prices of books in the

** titles table as follows:

* %

** |f current price is <= $30, increase it by 20%
** |f current price is > $30 and <= $60, increase
** it by 10%

** |f current price is > $60, increase it by 5%
* *

** Al price changes must take effect, so this is
** done in a single transaction.

*/

create procedure increase_price
as

/* start the transaction */
begi n transaction
/* first update prices > $60 */
update titles
set price = price * 1.05
where price > $60

639

Comparing performance with and without cursors

/* next, prices between $30 and $60 */
update titles

set price = price * 1.10
where price > $30 and price <= $60

/* and finally prices <= $30 */
update titles

set price = price * 1.20

where price <= $30

/* conmit the transaction */
commit transaction

return

Sample stored procedure with a cursor

This procedure performs the same changes to the underlying table as the
procedure written without a cursor, but it uses cursors instead of set-
oriented programming. As each row is fetched, examined, and updated, a
lock is held on the appropriate data page. Also, as the commentsindicate,
each update commits asit is made, since there is no explicit transaction.

/* Sanme as previous exanple, this time using a
** cursor. Each update conmits as it is nade
*/

create procedure increase_price_cursor

as

declare @rice noney

/* declare a cursor for the select fromtitles */
decl are curs cursor for

sel ect price

fromtitles

for update of price

/* open the cursor */
open curs

[* fetch the first row */
fetch curs into @rice

/* now | oop, processing all the rows
** @&ql status = 0 neans successful fetch

640

CHAPTER 27 Cursors and Performance

** @ql status
** @ql status
*/
while (@®ql status !'= 2)
begin
/* check for errors */
if (@qlstatus = 1)
begin
print "Error in increase_price"
return
end

1 nmeans error on previous fetch
2 neans end of result set reached

/* next adjust the price according to the
** criteria

*/

if @rice > $60

select @rice = @rice * 1.05

el se

if @rice > $30 and @rice <= $60
select @rice = @rice * 1.10

el se

if @rice <= $30

select @rice = @rice * 1.20

/* now, update the row */
update titles

set price = @rice

where current of curs

/* fetch the next row */
fetch curs into @rice
end

/* close the cursor and return */
cl ose curs
return

Which procedure do you think will have better performance, one that
performs three table scans or one that performs a single scan viaa cursor?

Cursor versus noncursor performance comparison

Table 27-2 shows statistics gathered against a 5000-row table. The cursor
code takes over 4 times longer, even though it scans the table only once.

641

Locking with read-only cursors

Table 27-2: Sample execution times against a 5000-row table

Procedure Access method Time

increase_price Uses three table scans 28 seconds

increase_price_cursor Uses cursor, single table 125 seconds
scan

Results from tests like these can vary widely. They are most pronounced
on systems that have busy networks, alarge number of active database
users, and multiple users accessing the same table.

In addition to locking, cursors involve more network activity than set
operations and incur the overhead of processing instructions. The
application program needs to communicate with Adaptive Server
regarding every result row of the query. Thisiswhy the cursor code took
much longer to compl ete than the code that scanned the table three times.

Cursor performance issues include:

e Locking at the page and table level

* Network resources

e Overhead of processing instructions

If there is a set-level programming equivalent, it may be preferable, even
if it involves multiple table scans.

Locking with read-only cursors

642

Here isapiece of cursor code you can use to display the locksthat are set
up at each point in the life of a cursor. The following example uses an
allpages-locked table. Execute the code in Figure 27-4, and pause at the
arrows to execute sp_lock and examine the locks that are in place.

CHAPTER 27 Cursors and Performance

Figure 27-4: Read-only cursors and locking experiment input

decl are cursl cursor for

select au_id, au_l nane, au_fnane
from aut hors
where au_id like '15%
for read only

go
open cursl

go < —
fetch cursl

go </
fetch cursil

go 100 e
cl ose cursil

go < —
deal | ocate cursor cursl
go

Table 27-3 shows the results.

Table 27-3: Locks held on data and index pages by cursors

Event Data page

After declare No cursor-related locks.

After open Shared intent lock on authors.

After first fetch Shared intent lock on authors and shared page lock on
apagein authors.

After 100 fetches Shared intent lock on authors and shared page lock on
adifferent page in authors.

After close No cursor-related locks.

If you issue another fetch command after the last row of the result set has
been fetched, the locks on the last page are released, so there will be no
cursor-related locks.

With a data-only-locked table:

e If thecursor query runs at isolation level 1, and read committed with
lock is set to O, you do not see any page or row locks. The values are
copied from the page or row, and the lock isimmediately released.

e If read committed with lock is set to 1 or if the query runs at isolation
level 2 or 3, you see either shared page or shared row locks at the point
that Table 27-3 indicates shared page locks. If the table uses datarows
locking, the sp_lock report includes the row ID of the fetched row.

643

Isolation levels and cursors

Isolation levels and cursors

The query plan for acursor is compiled and optimized when the cursor is
opened. You cannot open a cursor and then use set transaction isolation
level to change the isolation level at which the cursor operates.

Since cursors using isolation level 0 are compiled differently from those
using other isolation levels, you cannot open a cursor at isolation level 0
and open or fetch from it at level 1 or 3. Similarly, you cannot open a
cursor at level 1 or 3 and then fetch from it at level 0. Attempts to fetch
from a cursor at an incompatible level result in an error message.

Once the cursor has been opened at a particular isolation level, you must
deallocate the cursor before changing isolation levels. The effects of
changing isolation levels while the cursor is open are as follows:

« Attempting to close and reopen the cursor at another isolation level
fails with an error message.

« Attempting to change isolation levels without closing and reopening
the cursor has no effect on the isolation level in use and does not
produce an error message.

You can include an at isolation clause in the cursor to specify an isolation
level. The cursor in the example below can be declared at level 1 and
fetched from level 0 because the query plan is compatible with the
isolation level:

decl are cprice cursor for

select title_id, price
fromtitles
where type = "busi ness”
at isolation read uncommitted

Partitioned heap tables and cursors

A cursor scan of an unpartitioned heap table can read all data up to and
including the final insertion made to that table, even if insertions took
place after the cursor scan started.

644

CHAPTER 27 Cursors and Performance

If aheap tableis partitioned, datacan beinserted into one of the many page
chains. The physical insertion point may be before or after the current
position of a cursor scan. This means that a cursor scan against a
partitioned table is not guaranteed to scan the final insertions made to that
table.

Note If your cursor operations require all insertsto be made at the end of
asingle page chain, do not partition the table used in the cursor scan.

Optimizing tips for cursors

Here are several optimizing tips for cursors:

e Optimize cursor selects using the cursor, not an ad hoc query.

e Use union or union all instead of or clauses or in lists.

» Declarethe cursor’sintent.

» Specify column namesin the for update clause.

» Fetch more than one row if you are returning rows to the client.
» Keep cursors open across commits and rollbacks.

» Open multiple cursors on a single connection.

Optimizing for cursor selects using a cursor

A standal one select statement may be optimized very differently than the
sameselect statement in an implicitly or explicitly updatable cursor. When
you are devel oping applicationsthat use cursors, always check your query
plans and 1/0O statistics using the cursor, rather than using a standalone
select. In particular, index restrictions of updatable cursors require very
different access methods.

645

Optimizing tips for cursors

Using union instead of or clauses or in lists

Cursors cannot use the dynamic index of row |Ds generated by the OR
strategy. Queries that use the OR strategy in standalone select statements
usually perform table scans using read-only cursors. Updatable cursors
may need to use a unique index and till require access to each data row,
in sequence, in order to evaluate the query clauses.

See“ Access Methods and Costing for or and in Clauses’ on page 451 for
more information.

A read-only cursor using union creates a worktable when the cursor is
declared, and sorts it to remove duplicates. Fetches are performed on the
worktable. A cursor using union all can return duplicates and does not
require aworktable.

Declaring the cursor’s intent

Always declare a cursor’s intent: read-only or updatable. This gives you
greater control over concurrency implications. If you do not specify the
intent, Adaptive Server decides for you, and very often it chooses
updatable cursors. Updatable cursors use update | ocks, thereby preventing
other update locks or exclusive locks. If the update changes an indexed
column, the optimizer may need to choose a table scan for the query,
resulting in potentially difficult concurrency problems. Be sureto examine
the query plans for queries that use updatable cursors.

Specifying column names in the for update clause

646

Adaptive Server acquires update locks on the pages or rows of all tables
that have columns listed in the for update clause of the cursor select
statement. If thefor update clauseisnot included in the cursor declaration,
all tables referenced in the from clause acquire update locks.

The following query includes the name of the column in the for update
clause, but acquires update locks only on the titles table, since price is
mentioned in the for update clause. The table uses allpages locking. The
locks on authors and titleauthor are shared page locks:

decl are curs3 cursor

for

sel ect au_l nane, au_fnane, price
fromtitles t, authors a,

CHAPTER 27 Cursors and Performance

titleauthor ta
wher e advance <= $1000
and t.title id = ta.title_id
and a.au_id = ta.au_id
for update of price

Table 27-4 shows the effects of:
e Omitting the for update clause entirely—no shared clause
¢ Omitting the column name from the for update clause

¢ Including the name of the column to be updated in the for update
clause

¢ Adding shared after the name of thetitles table while using for update
of price

In this table, the additional locks, or more restrictive locks for the two
versions of the for update clause are emphasized.

Table 27-4: Effects of for update clause and shared on cursor

locking
Clause titles authors titleauthor
None sh_page on index

sh pageondata sh pageondata sh _pageon data
for update updpage onindex updpage on index

updpageondata updpageondata updpage on data
for update of sh_page on index
price updpageondata sh pageondata sh pageon data
for update of sh_page on index
price sh pageondata sh pageondata sh pageondata
+ shared

Using set cursor rows

The SQL standard specifies a one-row fetch for cursors, which wastes
network bandwidth. Using the set cursor rows query option and Open
Client’s transparent buffering of fetches, you can improve performance:

ct _cursor (CT_CURSOR_ROWB)

Be careful when you choose the number of rows returned for frequently
executed applications using cursors—tune them to the network.

647

Optimizing tips for cursors

See “Changing network packet sizes” on page 16 for an explanation of
this process.

Keeping cursors open across commits and rollbacks

ANSI closes cursors at the conclusion of each transaction. Transact- SQL
provides the set option close on endtran for applications that must meet
ANSI behavior. By default, however, this option isturned off. Unlessyou
must meet ANSI requirements, leave this option off to maintain
concurrency and throughput.

If you must be ANSI-compliant, decide how to handle the effects on
Adaptive Server. Should you perform alot of updatesor deletesinasingle
transaction? Or should you keep the transactions short?

If you choose to keep transactions short, closing and opening the cursor
can affect throughput, since Adaptive Server needs to rematerialize the
result set each time the cursor is opened. Choosing to perform more work
in each transaction, this can cause concurrency problems, since the query
holds locks.

Opening multiple cursors on a single connection

648

Some devel opers simulate cursors by using two or more connections from
DB-Library™. One connection performs a select and the other performs
updates or deletes on the sametables. Thishasvery high potential to create
application deadlocks. For example:

e Connection A holdsasharedlock on apage. Aslong astherearerows
pending from Adaptive Server, ashared lock is kept on the current

page.

e Connection B requests an exclusive lock on the same pages and then
waits.

e The application waits for Connection B to succeed before invoking
whatever logic is needed to remove the shared lock. But this never
happens.

Since Connection A never requests alock that is held by Connection B,
thisis not a server-side deadlock.

CHAPTER 28 Introduction to Abstract Plans

This chapter provides an overview of abstract plans.

Topic Page
Definition 649
Managing abstract plans 650
Relationship between query text and query plans 650
Full versus partia plans 651
Abstract plan groups 653
How abstract plans are associated with queries 654

Definition

Adaptive Server can generate an abstract plan for a query, and save the
text and its associated abstract plan in the sysqueryplans system table.
Using arapid hashing method, incoming SQL queries can be compared to
saved query text, and if amatchisfound, the corresponding saved abstract
plan is used to execute the query.

An abstract plan describesthe execution plan for aquery using alanguage
created for that purpose. Thislanguage contains operators to specify the
choices and actions that can be generated by the optimizer. For example,
to specify an index scan on thetitles table, using the index title_id_ix, the
abstract plan says:

(i_scan title_id_ix titles)

Abstract plans provide a means for System Administrators and
performance tunersto protect the overall performance of a server from
changesto query plans. Changesin query plans can arise due to:

» Adaptive Server software upgrades that affect optimizer choices and
query plans

* New Adaptive Server features that change query plans

649

Managing abstract plans

« Changing tuning options such as the parallel degree, table
partitioning, or indexing

The major purpose of abstract plansisto provide ameansto capture query
plans before and after major system changes. The sets of before-and-after
query plans can be compared to determine the effects of changes on your
queries. Other uses include;

e Searching for specific types of plans, such as table scans or
reformatting

e Searching for plans that use particular indexes

e Specifying full or partial plansfor poorly-performing queries

e Saving plansfor queries with long optimization times

Abstract plans provide an alternative to options that must be specified in
the batch or query in order to influence optimizer decisions. Using abstract
plans, you can influence the optimization of a SQL statement without
having to modify the statement syntax. While matching query text to

stored text requires some processing overhead, using a saved plan reduces
query optimization overhead.

Managing abstract plans

A full set of system procedures allows System Administrators and
Database Owners to administer plans and plan groups. Individual users
can view, drop, and copy the plans for the queries that they have run.

See Chapter 31, “Managing Abstract Plans with System Procedures.”

Relationship between query text and query plans

650

For most SQL queries, there are many possible query execution plans.
SQL describes the desired result set, but does not describe how that result
set should be obtained from the database. Consider aquery that joinsthree
tables, such asthis:

select t1l.cl1, t2.c21
fromtl, t2, t3

CHAPTER 28 Introduction to Abstract Plans

where tl.cll1 =t2.c21
and t1.cl11 =1t3.c31

There are many different possible join orders, and depending on the
indexes that exist on the tables, many possible access methods, including
table scans, index scans, and the reformatting strategy. Each join may use
either anested-loop join or amerge join. These choices are determined by
the optimizer’s query costing algorithms, and are not included in or
specified in the query itself.

When you capture the abstract plan, the query is optimized in the usual
way, except that the optimizer also generates an abstract plan, and saves
the query text and abstract plan in sysqueryplans.

Limits of options for influencing query plans
Adaptive Server provides other options for influencing optimizer choices:

e Session-level options such as set forceplan to force join order or set
parallel_degree to specify the maximum number of worker processes
to use for the query

¢ Optionsthat can beincluded in the query text to influence the index
choice, cache strategy, and parallel degree

There are some limitations to using set commands or adding hints to the
query text:

¢ Not all query plan steps can be influenced, for example, subquery
attachment

¢ Some query-generating tools do not support the in-query options or
require al queries to be vendor-independent

Full versus partial plans

Abstract plans can be full plans, describing all query processing steps and
options, or they can be partia plans. A partial plan might specify that an
index isto be used for the scan of aparticular table, without specifying the
index name or the join order for the query. For example:

select tl1l.cll, t2.c21
fromtl, t2, t3

651

Full versus partial plans

where t1.cl11 = t2.c21
and t1.c11 = t3.c31

The full abstract plan includes:

e Thejointype, either nl_g_join for nested-loop joins, or m_g_join for
merge joins. The plan for this query specifies a nested-loop join.

e Thejoin order, included in the nl_g_join clause.
* Thetype of scan, t_scan for table scan or i_scan for index scan.

* The name of the index chosen for the tables that are accessed viaan
index scan.

e The scan properties: the parallel degree, 1/0 size, and cache strategy
for each table in the query.

The abstract plan for the query above specifies the join order, the access
method for each table in the query, and the scan properties for each table:

(nl _g_join
(t_scan t2)
(i_scan tl cl1l ix t1)
(i_scan t3_c31_ix t3)

)

(prop t3
(parallel 1)
(prefetch 16)
(lru)

)

(proptl
(parallel 1)
(prefetch 16)
(lru)

)

(prop t2
(parallel 1)
(prefetch 16)
(lru)

)

Chapter 32, “ Abstract Plan Language Reference,” provides areferenceto
the abstract plan language and syntax.

652

CHAPTER 28 Introduction to Abstract Plans

Creating a partial plan

When abstract plans are captured, full abstract plans are generated and
stored. You can write partial plansto affect only a subset of the optimizer
choices. If the query above had not used the index on t3, but all other parts
of the query plan were optimal, you could create a partia plan for the
query using the create plan command. This partial plan specifies only the
index choicefor t3:

create plan

"select tl1.cll, t2.c21
fromtl, t2, t3

where tl1l.cll1 = t2.c21
and tl1.c11 = t3.c31"

"(i_scan t3_c31_ix t3)"

You can aso create abstract plans with the plan clause for select, delete,
update, and other commands that can be optimized.

See “Creating plans using SQL” on page 690.

Abstract plan groups

When youfirst install Adaptive Server, there are two abstract plan groups:
e ap_stdout, used by default for capturing plans
e ap_stdin, used by default for plan association

A System Administrator can enable server-wide plan captureto ap_stdout,
so that all query plansfor al queries are captured. Server-wide plan
association uses queries and plans from ap_stdin. If some queries require
specially-tuned plans, they can be made available server-wide.

A System Administrator or Database Owner can create additional plan
groups, copy plans from one group to another, and compare plansin two
different groups.

The capture of abstract plans and the association of abstract plans with
queries always happens within the context of the currently-active plan
group. Users can use session-level set commands to enable plan capture
and association.

Some of the ways abstract plan groups can be used are:

653

How abstract plans are associated with queries

e A query tuner can create abstract plansin a group created for testing
purposes without affecting plans for other users on the system

e Using plan groups, “before” and “after” sets of plans can be used to
determine the effects of system or upgrade changes on query
optimization.

See Chapter 30, “Creating and Using Abstract Plans,” for information on
enabling the capture and association of plans.

How abstract plans are associated with queries

654

When an abstract plan is saved, all white space (returns, tabs, and multiple
spaces) in the query is trimmed to asingle space, and a hash-key valueis
computed for the white-space trimmed SQL statement. The trimmed SQL
statement and the hash key are stored in sysqueryplans along with the
abstract plan, aunique plan ID, the user’s ID, and the ID of the current
abstract plan group.

When abstract plan association isenabled, the hash key for incoming SQL
statements is computed, and this value is used to search for the matching
query and abstract plan in the current association group, with the
corresponding user 1D. The full association key of an abstract plans
consists of:

e Theuser ID of the current user
e Thegroup ID of the current association group
e Thefull query text

Once a matching hash key is found, the full text of the saved query is
compared to the query to be executed, and used if it matches.

The association key combination of user ID, group ID and query text
means that for a given user, there cannot be two queriesin the same
abstract plan group that have the same query text, but different query
plans.

CHAPTER 29

Introduction

Abstract Query Plan Guide

This chapter covers some guidelines you can use in writing Abstract
Plans.

Topic Page
Introduction 655
Tips on writing abstract plans 677
Comparing plans “before” and “ after” 678
Abstract plans for stored procedures 680
Ad Hoc queries and abstract plans 681

Abstract plans allow you to specify the desired execution plan of a query.
Abstract plans provide an alternative to the session-level and query level
optionsthat force ajoin order, or specify theindex, 1/0 size, or other query
execution options. The session-level and query-level options are
described in Chapter 30, “Creating and Using Abstract Plans.”

There are several optimization decisions that cannot be specified with set
commands or clausesincluded in the query text. Some examples are:

¢ Subquery attachment
e Thejoin order for flattened subqueries
¢ Reformatting

In many cases, including set commands or changing the query text is not
always possible or desired. Abstract plans provide an alternative, more
complete method of influencing optimizer decisions.

Abstract plans are relational algebra expressions that are not included in
the query text. They are stored in a system catalog and associated to
incoming queries based on the text of these queries.

655

Introduction

The tables used in this section are the same as those in Chapter 32,
“Abstract Plan Language Reference.” See“ Schemafor examples’ on
page 712 for the create table and create index Statements.

Abstract plan language

The abstract plan languageisarelational algebrathat usesthese operators:

g_join, the generic join, ahigh-level logical join operator. It describes
inner, outer and existence joins, using either nested-loop joins or sort-
merge joins.

nl_g_join, specifying a nested-loop join, including all inner, outer, and
existencejoins

m_g_join, specifying a merge join, including inner and outer joins.
union, alogical union operator. It describes both the union and the
union all SQL constructs.

scan, alogical operator that transforms a stored table in a flow of
rows, aderived table. It allows partial plansthat do not restrict the
access method.

i_scan, aphysical operator, implementing scan. It directs the
optimizer to use an index scan on the specified table.

t_scan, aphysical operator, implementing scan. It directs the
optimizer to use afull table scan on the specified table.

store, alogical operator, describing the materialization of aderived
table in a stored worktable.

nested, afilter, describing the placement and structure of nested
subqueries.

See “Schema for examples” on page 712 for the create table and create
index commands used for the examples in this section.

Additional abstract plan keywords are used for grouping and
identification:

656

plan groups the elements when a plan requires multiple steps.
hints groups a set of hintsfor a partial plan.

prop introduces a set of scan properties for atable: prefetch, Irujmru
and parallel.

CHAPTER 29 Abstract Query Plan Guide

¢ table identifies atable when correlation names are used, and in
subqueries or views.

e work_tidentifies aworktable.

e in, used with table, for identifying tables named in a subquery (subq)
or view (view).

e subg isalso used under the nested operator to indicate the attachment
point for a nested subguery, and to introduce the subqueries abstract
plan.

Queries, access methods, and abstract plans

For any specific table, there can be several access methods for a specific
guery: index scans using different indexes, table scans, the OR strategy,
and reformatting are some examples.

This simple query has several choices of access methods:

select * fromt1l
where cl11 > 1000 and c12 < O

The following abstract plans specify three different access methods:
¢ Usetheindexi_cii:
(i_scan i_c11 t1)
e Usetheindexi_ci12:
(i_scan i_c12 t1)
* Doafull table scan:
(t_scan t1)

Abstract plans can be full plans, specifying all optimizer choicesfor a
query, or can specify asubset of the choices, such astheindex to usefor a
singletablein the query, but not the join order for the tables. For example,
using apartial abstract plan, you can specify that the query above should
use someindex and let the optimizer choose betweeni_c11 andi_c12, but
not do afull table scan. The empty parentheses are used in place of the
index name:

(i_scan () t1)

In addition, the query could use either 2K or 16K 1/O, or be performedin
serial or parallel.

657

Introduction

Identifying tables

658

(g_join

Abstract plans need to name all of a query’stables in a non-ambiguous
way, such that atable named in the abstract can be linked to its occurrence
in the SQL query. In most cases, the table nameisall that isneeded. If the
query qualifies the table name with the database and owner name, these
are also needed to fully identify atable in the abstract plan. For example,
this example used the unqualified table name:

select * fromtl
The abstract plan also uses the unqualified name:
(t_scan t1)
If a database name and/or owner name are provided in the query:
sel ect * from pubs2.dbo.t1l
Then the abstract plan must also use the qualifications:
(t_scan pubs2.dbo.t1)

However, the same table may occur several timesin the same query, asin
this example:

select * fromtl a, t1 b

Correlation names, a and b in the example above, identify the two tables
in SQL. In an abstract plan, the table operator associates each correlation
name with the occurrence of the table:
(g_join
(t_scan (table ((atl)))
(t_scan (table (bt1)))
)
Table names can a so be ambiguous in views and subqueries, so the table
operator isused for tablesin views and subqueries.

For subqueries, thein and subq operators qualify the name of the tablewith
its syntactical containment by the subquery. The same tableisused in the
outer query and the subquery in this example:

sel ect *
fromtl
where cl11 in (select c12 fromtl where cl11 > 100)

The abstract plan identifies them unambiguously:

(t_scan tl)

CHAPTER 29 Abstract Query Plan Guide

(i_scani_c11 c12 (table t1 (in (subg 1))))

For views, thein and view operators provide the identification. The query
in this example references atable used in the view:

create view vl
as
select * fromtl where cl12 > 100
select tl1l.c11 fromtl, vl
where t1l.cl12 = vl.cll

Here isthe abstract plan:
(g_join
(t_scan tl)
(i_scan i_c12 (table t1 (in (viewvl))))

Identifying indexes

Thei_scan operator reguires two operands, the index name and the table
name, as shown here:

(i_scani_cl12 t1)

To specify that some index should be used, without specifying the index,
substitute empty parenthesis for the index name:

(i_scan () t1)

Specifying join order

Adaptive Server performs joins of three or more tables by joining two of
the tables, and joining the “ derived table” from that join to the next table
inthejoin order. This derived table is aflow of rows, as from an earlier
nested-loop join in the query execution.

This query joins three tables:

sel ect *
fromtl, t2, t3
where cl1 = c21

and cl12 = c31
and c22 = 0
and c32 = 100

659

Introduction

This example shows the binary nature of the join algorithm, using g_join
operators. The plan specifiesthe join order t2, t1, t3:

(g_join
(g_join
(scan t2)
(scan t1)
)
(scan t3)
)

Theresults of thet2-t1 join are then joined to t3. The scan operator in this
exampl e leaves the choice of table scan or index scan up to the optimizer.

Shorthand notation for joins

660

Ingeneral, aN-way join, withthe order t1, t2, t3..., tN-1, tN isdescribed by:

(g_join
(g_join
 (gjoin
(g_join
(scan t1)
(scan t2)
)
(scan t3)
)
.(ls;:an tN-1)
)
(scan tN)
)
This notation can be used as shorthand for the g_join operator:
(g_join
(scan t1)
(scan t2)
(scan t3)
.(.s;:an tN-1)
(scan tN)
)

This notation can be used for g_join, and nl_g_join, and m_g_join.

CHAPTER 29 Abstract Query Plan Guide

Join order examples

The optimizer could select among several plans for this three-way join
query:
sel ect *

fromtl, t2, t3
where cll1 = c21

and cl12 = c31
and c22 = 0
and c¢32 = 100

Here are afew examples:

* Usec22 asasearch argument on t2, join with t1 on c11, then with t3

onc31:
(g_join
(i _scan i_c22 t2)
(i_scan i_cl1l1 t1)
(i_scan i_c31 t3)
)

e Usethe search argument on t3, and the join order t3, t1, t2:
(g_join
(i _scan i_c32 t3)
(i_scan i_c12 t1)
(i_scan i_c21 t2)
)

¢ Doafull table scan of t2, if it issmall and fitsin cache, still using the
join order t3, t1, t2:
(g_join
(i _scan i_c32 t3)
(i_scan i_c12 t1)
(t_scan t2)
)

e Iftlisverylarge andt2 andt3 individually qualify alarge part of t1,
but together avery small part, this plan specifiesa STAR join:
(g_join
(i_scan i_c22 t2)
(i _scan i_c32 t3)
(i_scan i_cl1l1 c12 t1)
)

All of these plans completely constrain the choice of join order, letting the
optimizer choose the type of join.

661

Introduction

The generic g_join operator implements outer joins, inner joins, and
existence joins. For examples of flattened subqueries that perform
existence joins, see “Flattened subqueries’ on page 668.

Match between execution methods and abstract plans

There are some limitsto join orders and join types, depending on the type
of query. One exampleis outer joins, such as:

select * fromtl, t2
where cll1 *= c21

Adaptive Server requiresthe outer member of the outer join to bethe outer
table during join processing. Therefore, this abstract planisillegal:
(g_join
(scan t2)
(scan t1)

)

Attempting to use thisplan resultsin an error message, and the query isnot
compiled.

Specifying join order for queries using views

662

You can use abstract plansto enforcethejoin order for merged views. This
example creates aview. This view performsajoin of t2 and t3:

create view v2
as

sel ect *
fromt2, t3
where c22 = c32

This query performs ajoin with the t2 in the view:

select * fromtl, v2
where cll = c21
and c22 = 0

This abstract plan specifies the join order t2, t1, t3:
(g_join
(scan (table t2 (in (viewv2))))

(scan t1)
(scan (table t3 (in (viewv2))))

)
This example joinswith t3in the view:

CHAPTER 29 Abstract Query Plan Guide

select * fromtl, v2
where cl1l1 = c31
and c32 = 100

This plan usesthe join order t3, t1, t2:

(g_join
(scan (table t3 (in (viewv2))))
(scan t1)
(scan (table t2 (in (viewv2))))

)

Thisis an example where abstract plans can be used, if needed, to affect
the join order for a query, when set forceplan cannot.

Specifying the join type

Adaptive Server can perform either nested-loop or mergejoins. Theg_join
operator leaves the optimizer free to choose the best join algorithm, based
on costing. To specify a nested-loop join, use the nl_g_join operator; for a
sort-merge join, use the m_g_join operator. Abstract plans captured by
Adaptive Server aways include the operator that specifies the algorithm,
and not the g_join operator.

Note that the“g” that appearsin each operator means“generic,” meaning
that they apply to inner joins and outer joins; g_join and nl_g_join can also
apply to existencejains.

This query specifies ajoin between t1 and t2:

select * fromtl, t2
where c¢l12 = ¢c21 and cl11 =0

This abstract plan specifies a nested-loop join:

(nl _g_join
(i_scan i_cl11 t1)
(i_scan i_c21 t2)

)

Thenested-loop plan usestheindexi_c11 tolimit the scan using the search
clause, and then performs the join with t2, using the index on the join
column.

This merge-join plan uses different indexes:

(mg_join
(i_scan i_cl12 t1)

663

Introduction

(i_scan i_c21 t2)
)

The merge join uses the indexes on the join columns, i_c12 andi_c21, for
the merge keys. This query performs a full-merge join and no sort is
needed.

A mergejoin could also usetheindex oni_c11 to select the rowsfrom t1
into aworktable; the merge usesthe index oni_c21:

(mg_join
(i_scan i1l t1)
(i_scan i21 t2)

)

The step that creates the worktable is not specified in the plan; the
optimizer detects when aworktable and sort are needed for join-key
ordering.

Specifying partial plans and hints

664

There are caseswhen afull plan is not needed. For example, if the only
problem with aquery planisthat the optimizer chooses atable scaninstead
of using anonclustered index, the abstract plan can specify only theindex
choice, and leave the other decisionsto the optimizer.

The optimizer could choose atable scan of t3 rather than using i_c31 for
this query:

sel ect *
fromtl, t2, t3
where cll1 = c21

and cl12 < c31
and c22 = 0
and c¢32 = 100

The following plan, as generated by the optimizer, specifiesjoin order t2,
t1, t3. However, the plan specifies a table scan of t3:
(g_join
(i_scan i_c22 t2)
(i_scan i_c11 t1)
(t_scan t3)
)

This full plan could be modified to specify the use of i_c31 instead:
(g_join

CHAPTER 29 Abstract Query Plan Guide

(i_scan i_c22 t2)
(i_scan i_cl11 t1)
(i_scan i_c31 t3)

)

However, specifying only a partial abstract plan isamore flexible
solution. As datain the other tables of that query evolves, the optimal join
order can change. The partia plan can specify just one partial plan item.
For the index scan of t3, the partial plan issimply:

(i_scan i_c31 t3)
The optimizer chooses the join order and the access methods for t1 and t2.

Grouping multiple hints

There may be cases where more than one plan fragment is needed. For
example, you might want to specify that some index should be used for
each table in the query, but leave the join order up to the optimizer. When
multiple hints are needed, they can be grouped with the hints operator:

(hints
(i_scan () t1)
(i_scan () t2)
(i_scan () t3)
)

In this case, the role of the hints operator is purely syntactic; it does not
affect the ordering of the scans.

Thereareno limits on what may be given asahint. Partial join orders may
be mixed with partial access methods. This hint specifiesthat t2 isouter to
t1 in the join order, and that the scan of t3 should use an index, but the
optimizer can choose theindex for t3, the access methodsfor t1 and t2, and
the placement of t3 in the join order:

(hints
(g_join
(scan t2)
(scan t1)
)

(i_scan () t3)

665

Introduction

Inconsistent and illegal plans using hints

It is possible to describe inconsistent plans using hints, such as this plan
that specifies contradictory join orders:

(hints
(g_join
(scan t2)
(scan t1)
)
(g_join
(scan t1)
(scan t2)
)
)

When the query associated with the plan is executed, the query cannot be
compiled, and an error israised.

Other inconsistent hints do not raise an exception, but may use any of the
specified access methods. This plan specifies both an index scan and a
table scan for the same table:

(hints
(t_scan t3)
(i_scan () t3)
)

In this case, either method may be chosen, the behavior isindeterminate.

Creating abstract plans for subqueries

666

Subqueries are resolved in several waysin Adaptive Server, and the
abstract plans reflect the query execution steps:

e Materialization—The subquery is executed and results are stored in a
worktableor internal variable. See* Materialized subqueries’ on page
667.

« Flattening — The query is flattened into ajoin with the tablesin the
main query. See “Flattened subqueries’ on page 668.

* Nesting — The subquery is executed once for each outer query row.
See “Nested subqueries’ on page 669.

CHAPTER 29 Abstract Query Plan Guide

Abstract plans do not allow the choice of the basic subquery resolution
method. Thisisarule-based decision and cannot be changed during query
optimization. Abstract plans, however, can be used to influence the plans
for the outer and inner queries. In nested subqueries, abstract plans can
also be used to choose where the subquery is nested in the outer query.

Materialized subqueries
This query includes a non correlated subquery that can be materialized:

sel ect *
fromtl
where cl1ll = (select count(*) fromt2)

Thefirst step in the abstract plan materializes the scalar aggregatein the
subquery. The second step uses the result to scan t1:

(plan
(i_scani_c21 (table t2 (in (subg 1))))
(i_scani_cl1 t1)

This query includes a vector aggregate in the subquery:

sel ect *

fromtl

where cl1ll in (select max(c2l)
fromt2
group by c22)

The abstract plan materializes the subquery in the first step, and joinsit to
the outer query in the second step:

(plan
(store Worktabl

(t_scan (table t2 (in (subg 1))))

)
(nl _g_join

(t_scan tl)

(t_scan (work_t Worktabl))
)

667

Introduction

Flattened subqueries

668

Some subqueries can be flattened into joins. The g_join and nl_g_join
operators leave it to the optimizer to detect when an existencejoinis
needed. For example, this query includes a subguery introduced with
exists:

select * fromtl
where cl12 > 0
and exists (select * fromt2
where tl1l.cl1l = c21
and c22 < 100)

The semantics of the query require an existencejoin betweentl andt2. The
join order t1, t2 isinterpreted by the optimizer as an existence join, with
the scan of t2 stopping on the first matching row of t2 for each qualifying
row intl:
(g_join
(scan t1)
(scan (table t2 (in (subgq 1))))
)

Thejoin order t2, t1 requires other means to guarantee the duplicate
elimination:

(g_join
(scan (table t2 (in (subg 1))))
(scan t1)

)

Using this abstract plan, the optimizer can decide to use:
e A uniqueindex ont2.c21, if one exists, with aregular join.

e Theunique reformatting strategy, if no unique index exists. In this
case, the query will probably use the index on c22 to select the rows
into aworktable.

e Theduplicate elimination sort optimization strategy, performing a
regular join and selecting the results into the worktable, then sorting
the worktable.

The abstract plan does not need to specify the creation and scanning of the
worktables needed for the last two options.

For more information on subguery flattening, see“ Flattening in, any, and
exists subqueries’ on page 494.

CHAPTER 29 Abstract Query Plan Guide

Example: changing the join order in a flattened subquery

Nested subqueries

The query can be flattened to an existence join:

sel ect *
fromtl, t2
where cll = c21
and c21 > 100
and exists (select * fromt3
where ¢31 !'= t1l.cll)

The“!=" correlation can make the scan of t3 rather expensive. If thejoin
order ist1, t2, the best placefor t3 in the join order depends on whether the
join of t1 and t2 increases or decreases the number of rows, and therefore,
the number of times that the expensive table scan needs to be performed.
If the optimizer fails to find the right join order for t3, the following
abstract plan can be used when the join reduces the number of times that
t3 must be scanned:
(g_join
(scan t1)

(scan t2)
(scan (table t3 (in (subg 1))))

)

If the join increases the number of times that t3 needs to be scanned, this
abstract plan performs the scans of t3 before the join:

(g_join
(scan t1)
(scan (table t3 (in (subg 1))))
(scan t2)

)

Nested subqueries can be explicitly described in abstract plans:
» Theabstract plan for the subquery is provided.

» Thelocation at which the subquery attaches to the main query is
specified.

Abstract plans allow you to affect the query plan for the subquery, and to
change the attachment point for the subquery in the outer query.

669

Introduction

The nested operator specifies the position of the subquery in the outer
query. Subqueriesare“ nested over” aspecific derived table. The optimizer
chooses a spot where all the correlation columns for the outer query are

available, and where it estimates that the subquery needs to be executed
the least number of times.

The following SQL statement contains a correlated expression subquery:

sel ect *
fromtl, t2
where cll1 = c21
and c21 > 100
and cl12 = (select ¢31 fromt3
where ¢32 = t1.cll)

The abstract plan shows the subquery nested over the scan of t1:

(g_join
(nested
(i_scani_cl2 t1)
(subg 1
(t_scan (table t3 (in (subg 1))))
)
)

(i_scani_c21t2)

Subquery identification and attachment

Subqueries are identified with numbers, in the order of their leading
opened parenthesis “(“.

This example has two subqueries, one in the select list:

sel ect

(select cl11l fromtl where ¢c12 = t3.¢c32), c31
fromt3

where ¢32 > (select c22 fromt2 where c21 = t3.c31)

In the abstract plan, the subquery containing t1 is named “1” and the

subquery containing t2 is named “2". Both subquery 1 and 2 are nested
over the scan of t3:

(nested
(nested
(t_scan t3)
(subg 1
(i_scani_cl11 c12 (table t1 (in (subgq 1))))

670

CHAPTER 29 Abstract Query Plan Guide

)
)
(subg 2
(i_scani_c21 (table t2 (in (subg2))))
)
)
In this query, the second subquery is nested in the first;
select * fromt3
where ¢32 > al
(select c11 fromtl where cl12 > all
(select c22 fromt2 where c21 =13.c31))
Inthiscase, the subquery containing t1 isalso named “ 1" and the subquery
containing t2 isnamed “2”. In thisplan, subquery 2 isnested over the scan
of t1, whichis performed in subquery 1; subquery 1isnested over the scan
of t3 in the main query:
(nested
(t_scan t3)
(subg 1
(nested
(i_scan i_c11 c12 (table tl1 (in (subg 1))))
(subg 2
(i_scan i_c21 (table t2 (in (subgq 2))))
)
)
)

More subquery examples: reading ordering and attachment

The nested operator has the derived table as the first operand and the
nested subquery as the second operand. This alows an easy vertical
reading of the join order and subquery placement:

sel ect *
fromtl, t2, t3
where cl12 = 0

and cl1l1 = c21

and c22 = c32
and 0 < (select c21 fromt2 where c22 = t1.c1l)

In the plan, the join order ist1, t2, t3, with the subquery nested over the
scan of t1:

(g_join
(nested

671

Introduction

(i_scani_cl1 t1)
(subg 1

(t_scan (table t2 (in (subg 1)))
)

)
(i_scani_c21t2)
(i_scani_c32t3)

Modifying subquery nesting

If you modify the attachment point for asubquery, you must choose apoint
at which all of the correlation columns are available. This query is
correlated to both of the tablesin the outer query:

sel ect *
fromtl, t2, t3
where c12 = 0
and cl11 = c21
and c22 = c32
and 0 < (select c31 fromt3 where ¢c31 = tl.cll
and c32 = t2.c22)

This plan uses the join order t1, t2, t3, with the subquery nested over the

t1-t2 join:
(g_join
(nested
(g_join
(i_scan i_c11 cl12 t1)
(i_scan i_c22t2)
)
(subg 1
(t_scan (table t3 (in(subg 1))))
)
)

(i_scan i_c321t3)
)

Since the subquery requires columns from both outer tables, it would be
incorrect to nest it over the scan of t1 or the scan of t2; such errors are
silently corrected during optimization.

672

CHAPTER 29 Abstract Query Plan Guide

Abstract plans for materialized views

(plan

(

)
(

Thisview is materialized during query processing:

create view v3

as

sel ect distinct *
fromt3

This query performs ajoin with the materialized view:

sel ect *
fromtl, v3
where cl1l1 = c31

A first step materializesthe view v3 into aworktable. The second joinsit
with the main query tablet1 :

store Wrktabl
(t_scan (table t3 (in (viewv3))))

g_join
(t_scan tl)
(t_scan (work_t Worktabl))

Abstract plans for queries containing aggregates

This query returns a scalar aggregate:
sel ect max(cll) fromt1l

Thefirst step computes the scalar aggregate and storesit in an internal
variable. The second step isempty, asit only returnsthe variable, in astep
with nothing to optimize:

(plan

Vector aggregates are al so two-step queries:

sel ect max(cll)
fromtl
group by c12

673

Introduction

Thefirst step processes the aggregates into a worktable; the second step
scans the worktabl e;

(plan
(store Worktabl
(t_scan tl)

)
(t_scan (work_t Worktabl))

)
Nested aggregates are a Transact-SQL extension:

sel ect max(count(*))

fromtl

group by cl1
Thefirst step processes the vector aggregate into aworktable, the second
scansit to processthe nested scalar aggregate into aninternal variable, and
the third step returns the value.

(plan
(store Worktabl
(i_scani_c12 t1)

_scan (work_t Worktabl))

t

)
)

Extended columns in aggregate queries are a Transact-SQL extension:

sel ect max(cl1l), cl1
fromtl
group by cl12

Thefirst step processes the vector aggregate; the second one joinsit back
to the base table to process the extended columns:

(plan
(store Worktabl
(t_scan tl)

)
(g_join

(t_scan tl)

(i_scan i_c11 (work_t Worktabl))
)

)
This example contains an aggregate in amerged view:

create view v4

674

CHAPTER 29 Abstract Query Plan Guide

as
sel ect max(cll) as c4l1l, cl2 as c42
fromtl
group by c12
select * fromt2, v4
where ¢c21 = 0

and c22 > c41

Thefirst step processes the vector aggregate; the second joinsit to the
main query table:

(plan
(store Worktabl

(t_scan (table t1 (in (viewvd))))

)
(g_join

(i_scani_c22t2)

(t_scan (work_t Worktabl))
)

)

This example includes an aggregate that is processed using amaterialized
view:

create view vb

as

sel ect distinct max(cll) as c51, cl1l2 as c52

fromtl

group by c12

select * fromt2, vb5

where c21 = 0

and c22 > c51

Thefirst step processes the vector aggregate into aworktable. The second
step scansit into asecond worktabl e to process the materialized view. The
third step joins this second worktable in the main query:

(plan
(store Worktabl

(t_scan (table t1 (in (viewv5))))
)
(store Worktab2

(t_scan (work_t Worktabl))

)
(g_join

(i_scani_c22t2)

(t_scan (work_t Worktab2))
)

675

Introduction

Specifying the reformatting strategy

In this query, t2 is very large, and has no index:

sel ect *

fromtl, t2

where cl11l > 0
and cl12 = c21
and c22 = 0

The abstract plan that specifies the reformatting strategy on t2 is:

(g_join
(t_scan t1
(scan
(store Worktabl
(t_scan t2)
)
)
)

In the case of the reformatting strategy, the store operator is an operand of
scan. Thisisthe only case when the store operator is not the operand of a
plan operator.

OR strategy limitation

The OR strategy has no matching abstract plan that describesthe RID scan
required to performthefinal step. All abstract plansgenerated by Adaptive
Server for the OR strategy specify only the scan operator. You cannot use
abstract plans to influence index choice for queries that require the OR
strategy to eliminate duplicates.

When the store operator is not specified

Some multistep queries that require worktables do not require multistep
plans with a separate worktabl e step, and the use of the store operator to
create the worktable. These are;

* The sort step of queries using distinct

676

CHAPTER 29 Abstract Query Plan Guide

The worktables needed for merge joins
Worktables needed for union queries

The sort step, when a flattened subquery requires sort to remove
duplicates

Tips on writing abstract plans

Here are some additional tips for writing and using abstract plans:

Look at the current plan for the query and at plans that use the same
guery execution steps as the plan you need to write. It is often easier
to modify an existing plan than to write a full plan from scratch.

» Capturethe plan for the query.
» Usesp_help_gplan to display the SQL text and plan.

» Edit this output to generate a create plan command, or attach an
edited plan to the SQL query using the plan clause.

It isoften best to specify partial plansfor query tuning in caseswhere
most optimizer decisions are appropriate, but only an index choice,
for example, needs improvement.

By using partial plans, the optimizer can choose other paths for other
tables as the data in other tables changes.

Once saved, abstract plans are static. Data volumes and distributions
may change so that saved abstract plans are no longer optimal.

Subsequent tuning changes made by adding indexes, partitioning a
table, or adding buffer pools may mean that some saved plans are not
performing as well as possible under current conditions. Most of the
time, you want to operate with a small number of abstract plans that
solve specific problems.

Perform periodic plan checks to verify that the saved plans are still
better than the plan that the optimizer would choose.

677

Comparing plans “before” and “after”

Comparing plans “before” and “after”

Abstract query plans can be used to assess the impact of an Adaptive
Server software upgrade or system tuning changes on your query plans.
You need to save plans before the changes are made, perform the upgrade
or tuning changes, and then save plans again and compare the plans. The
basic set of stepsis:

1

N o o b~

Enable server-wide capture mode by setting the configuration
parameter abstract plan dump to 1. All plans are then captured in the
default group, ap_stdout.

Allow enough time for the captured plans to represent most of the
gueriesrun on the system. You can check whether additional plansare
being generated by checking whether the count of rows in the
ap_stdout group in sysqueryplans is stable:

sel ect count(*) from sysqueryplans where gid = 2

Copy all plansfromap_stdout to ap_stdin (or some other group, if you
do not want to use server-wide plan load mode), using
sp_copy_all_gplans.

Drop all query plans from ap_stdout, using sp_drop_all_gplans.
Perform the upgrade or tuning changes.
Allow sufficient time for plans to be captured to ap_stdout.

Compare plansin ap_stdout and ap_stdin, using the diff mode
parameter of sp_cmp_all_gplans. For example, this query compares
al plansin ap_stdout and ap_stdin:

sp_cnp_al |l _gpl ans ap_stdout, ap_stdin, diff

Thisdisplays only information about the plansthat are different in the
two groups.

Effects of enabling server-wide capture mode

When server-wide capture mode is enabled, plansfor all queries that can
be optimized are saved in all databases on the server. Some possible
system administration impacts are;

678

CHAPTER 29 Abstract Query Plan Guide

¢ When plans are captured, the plan is saved in sysqueryplans and log
records are generated. The amount of space required for the plansand
log records depends on the size and compl exity of the SQL statements
and query plans. Check space in each database where users will be
active.

You may need to perform more frequent transaction log dumps,
especialy in the early stages of server-wide capture when many new
plans are being generated.

e If users execute system procedures from the master database, and
installmaster was |oaded with server-wide plan capture enabled, then
plans for the statements that can be optimized in system procedures
are saved in master..sysqueryplans.

Thisis aso true for any user-defined procedures created while plan
capture was enabled. You may want to provide a default database at
login for al users, including System Administrators, if spacein
master is limited.

e Thesysqueryplans table uses datarows locking to reduce lock
contention. However, especially when alarge number of new plans
are being saved, there may be a dight impact on performance.

¢ While server-wide capture mode is enabled, using bcp saves query
plansin the master database. If you perform bcp using alarge number
of tables or views, check sysqueryplans and the transaction log in
master.

Time and space to copy plans

If you have alarge number of query plansin ap_stdout, be sure there is
sufficient space to copy them on the system segment before starting the
copy. Use sp_spaceused to check the size of sysqueryplans, and
sp_helpsegment to check the size of the system segment.

Copying plans also requires space in the transaction log.

sp_copy_all_gplans calls sp_copy_gplan for each plan in the group to be
copied. If sp_copy_all_gplans failsat any time dueto lack of space or other
problems, any plans that were successfully copied remain in the target
query plan group.

679

Abstract plans for stored procedures

Abstract plans for stored procedures

For abstract plans to be captured for the SQL statements that can be
optimized in stored procedures:

» Theproceduresmust be created while plan capture or plan association
mode is enabled. (This saves the text of the procedurein
sysprocedures.)

* Theprocedure must be executed with plan capture mode enabled, and
the procedure must be read from disk, not from the procedure cache.

This sequence of steps captures the query text and abstract plans for all
statements in the procedure that can be optimized:

set plan dunp dev_plans on

go

create procedure nyproc as ...
go

exec nyproc

go

If the procedure isin cache, so that the plans for the procedure are not
being captured, you can execute the procedure with recompile. Similarly,
once a stored procedure has been executed using an abstract query plan,
the plan in the procedure cache is used so that query plan association does
not take place unless the procedure is read from disk.

Procedures and plan ownership

680

When plan capture mode is enabled, abstract plans for the statementsin a
stored procedure that can be optimized are saved with the user 1D of the
owner of the procedure.

During plan association mode, association for stored proceduresis based
ontheuser ID of the owner of the procedure, not the user who executesthe
procedure. This means that once an abstract query planis created for a
procedure, all users who have permission to execute the procedure use the
same abstract plan.

CHAPTER 29 Abstract Query Plan Guide

Procedures with variable execution paths and optimization

Executing a stored procedure saves abstract plans for each statement that
can be optimized, even if the stored procedure contains control-of-flow
statements that can cause different statements to be run depending on
parameters to the procedure or other conditions. If the query isruna
second time with different parametersthat use adifferent code path, plans
for any statementsthat were optimized and saved by the earlier execution,
and the abstract plan for the statement is associated with the query.

However, abstract plans for procedures do not solve the problem with
procedures with statements that are optimized differently depending on
conditions or parameters. One exampleisaprocedure where usersprovide
the low and high values for a between clause, with a query such as:

select title id
fromtitles
where price between @o and @i

Depending on the parameters, the best plan could either beindex access or
atable scan. For these procedures, the abstract plan may specify either
access method, depending on the parameters when the procedure was first
executed. For more information on optimization of procedures, see
“Splitting stored procedures to improve costing” on page 403.

Ad Hoc queries and abstract plans

Abstract plan capture savesthefull text of the SQL statement and abstract
plan association isbased on the full text of the SQL query. If users submit
ad hoc SQL statements, rather than using stored procedures or Embedded
SQL, abstract plans are saved for each different combination of query
clauses. This can result in avery large number of abstract plans.

If users check the price of a specific title_id using select statements, an
abstract planis saved for each statement. The following two queries each
generate an abstract plan:

"T19245"
" T40007"

select price fromtitles where title_id
select price fromtitles where title_id

In addition, there is one plan for each user, that is, if several users check
for the title_id “T40007", aplan is save for each user ID.

If such queries areincluded in stored procedures, there are two benefits:

681

Ad Hoc queries and abstract plans

e Only only one abstract plan is saved, for example, for the query:

select price fromtitles where title_id =
@itle_id

e Theplanis saved with the user ID of the user who owns the stored
procedure, and abstract plan association is made based on the
procedure owner’s ID.

Using Embedded SQL, the only abstract plan is saved with the host
variable:

select price fromtitles
where title id = :host_var_id

682

CHAPTER 30

Creating and Using Abstract
Plans

This chapter provides an overview of the commands used to capture
abstract plans and to associate incoming SQL queries with saved plans.
Any user can issue session-level commands to capture and load plans
during a session, and a System Administrator can enable server-wide
abstract plan capture and association. This chapter also describes how to
specify abstract plans using SQL.

Topic Page
Using set commands to capture and associate plans 683
set plan exists check option 688
Using Other set options with abstract plans 688
Server-wide abstract plan capture and association Modes 690
Creating plans using SQL 690

Using set commands to capture and associate plans

At the session level, any user can enable and disable capture and use of
abstract planswith the set plan dump and set plan load commands. The set
plan replace command determines whether existing plans are overwritten
by changed plans.

Enabling and disabling abstract plan modes takes effect at the end of the
batch in which the command isincluded (similar to showplan). Therefore,
change the mode in a separate batch before you run your queries:

set plan dunp on
go

/*queries to run*/
go

Any set plan commands used in a stored procedure do not affect the
procedure in which they are included, but remain in effect after the
procedure compl etes.

683

Using set commands to capture and associate plans

Enabling plan capture mode with set plan dump

The set plan dump command activates and deactivates the capture of
abstract plans. You can save the plans to the default group, ap_stdout, by
using set plan dump with no group name:

set plan dunp on

To start capturing plansin aspecific abstract plan group, specify the group
name. This example sets the group dev_plans as the capture group:

set plan dunp dev_plans on

The group that you specify must exist before you issue the set command.
The system procedure sp_add_gpgroup creates abstract plan groups; only
the System Administrator or Database Owner can create an abstract plan
group. Once an abstract plan group exists, any user can dump plansto the
group. See “Creating agroup” on page 696 for information on creating a
plan group.

To deactivate the capturing of plans, use:
set plan dunp off

You do not need to specify a group name to end capture mode. Only one
abstract plan group can be active for saving or matching abstract plans at
any onetime. If you are currently saving plans to a group, you must turn
off the plan dump mode, and reenable it for the new group, as shown here:

set plan dunp on /*save to the default group*/
go

/*some queries to be captured */

go

set plan dunp off

go

set plan dunp dev_plans on

go

/*addi tional queries*/

go

The use of the use database command while set plan dump isin effect
disables plan dump mode.

Associating queries with stored plans

The set plan load command activates and deactivates the association of
queries with stored abstract plans.

CHAPTER 30 Creating and Using Abstract Plans

To start the association mode using the default group, ap_stdin, use the
command:

set plan | oad on

To enable association mode using another abstract plan group, specify the
group name:

set plan |oad test_plans on

Only one abstract plan group can be activefor plan association at onetime.
If plan association is active for a group, you must deactivate the current
group and start association for the new group, as shown here:

set plan | oad test_plans on

go
/*sone queries*/

go
set plan | oad off

go

set plan | oad dev_plans on
go

The use of the use database command while set plan load isin effect
disables plan load mode.

Using replace mode during plan capture

While plan capture mode is active, you can choose whether to have plans
for the same query replace existing plans by enabling or disabling set plan
replace. This command activates plan replacement mode:

set plan replace on

You do not specify agroup namewith set plan replace; it affectsthe current
active capture group.

To disable plan replacement:
set plan replace off

The use of the use database command while set plan replace is in effect
disables plan replace mode.

685

Using set commands to capture and associate plans

When to use replace mode

When you are capturing plans, and a query has the same query text as an
already-saved plan, the existing plan is not replaced unless replace mode
isenabled. If you have captured abstract plansfor specific queries, and you
are making physical changesto the database that affect optimizer choices,
you need to replace existing plans for these changes to be saved.

Some actions that might require plan replacement are:

e Adding or dropping indexes, or changing the keys or key ordering in
indexes

« Changing the partitioning on atable
e Adding or removing buffer pools
« Changing configuration parameters that affect query plans

For plans to be replaced, plan load mode should not be enabled in most
cases. When plan association is active, any plan specifications are used as
inputs to the optimizer. For example, if afull query plan includes the
prefetch property and an 1/O size of 2K, and you have created a 16K pool
and want to replace the prefetch specification in the plan, do not enable
plan load mode.

You may want to check query plans and replace some abstract plans as
data distribution changes in tables, or after rebuilds on indexes, updating
statistics, or changing the locking scheme.

Using dump, load, and replace modes simultaneously

You can have both plan dump and plan load mode active simultaneously,
with or without replace mode active.

Using dump and load to the same group

686

If you have enabled dump and load to the same group, without replace
mode enabled:

e |f avalid plan existsfor the query, it isloaded and used to optimize
the query.

e |f aplan existsthat is not valid (say, because an index has been
dropped) a new plan is generated and used to optimize the query, but
is not saved.

CHAPTER 30 Creating and Using Abstract Plans

If the plan isapartial plan, afull plan is generated, but the existing
partial plan is not replaced

If aplan does not exist for the query, aplan is generated and saved.

With replace mode also enabled:

If avalid plan exists for the query, it isloaded and used to optimize
the query.

If the plan is not valid, anew plan is generated and used to optimize
the query, and the old plan is replaced.

If theplanisapartia plan, acomplete planisgenerated and used, and
the existing partial plan is replaced. The specifications in the partial
plan are used as input to the optimizer.

If aplan does not exist for the query, aplan is generated and saved.

Using dump and load to different groups

If you have dump enabled to one group, and load enabled from another
group, without replace mode enabled:

If avalid plan exists for the query in the load group, it is loaded and
used. The planissaved in the dump group, unlessaplan for the query
already exists in the dump group.

If the plan in theload group is not valid, anew plan isgenerated. The
new plan is saved in the dump group, unless a plan for the query
already exists in the dump group.

If the plan in the load group isapartial plan, afull planis generated
and saved in the dump group, unless a plan already exists. The
specificationsin the partial plan are used as input to the optimizer.

If thereisno plan for the query in theload group, the plan is generated
and saved in the dump group, unless a plan for the query existsin the
dump group.

With replace mode active:

If avalid plan exists for the query in the load group, it is loaded and
used.

If the plan in the load group is not valid, anew plan is generated and
used to optimize the query. The new planis saved in the dump group.

687

set plan exists check option

e |f theplanintheload group isapartial plan, afull plan is generated
and saved inthe dump group. The specificationsinthe partial plan are
used as input to the optimizer.

e |f aplan doesnot exist for the query in the load group, anew planis
generated. The new plan is saved in the dump group.

set plan exists check option

The exists check mode can be used during query plan association to speed
performance when users require abstract plans for fewer than 20 queries
from an abstract plan group. If asmall number of queries require plansto
improve their optimization, enabling exists check mode speeds execution
of all queriesthat do not have abstract plans, because they do not check for
plansin sysqueryplans.

When set plan load and set exists check are both enabled, the hash keysfor
up to 20 queriesin theload group are cached for the user. If theload group
contains more than 20 queries, exists check mode is disabled. Each
incoming query is hashed; if its hash key is not stored in the abstract plan
cache, then thereis no plan for the query and no search is made. This
speeds the compilation of al queries that do not have saved plans.

The syntax is:
set plan exists check {on | off}
You must enable load mode before you enable plan hash-key caching.

A System Administrator can configure server-wide plan hash-key caching
with the configuration parameter abstract plan cache. To enable server-
wide plan caching, use:

sp_configure "abstract plan cache", 1

Using Other set options with abstract plans

688

You can combine other set tuning options with set plan dump and set plan
load.

CHAPTER 30 Creating and Using Abstract Plans

Using showplan

Using noexec

Using forceplan

When showplan isturned on, and abstract plan association mode has been
enabled with set plan load, showplan prints the plan ID of the matching
abstract plan at the beginning of the showplan output for the statement:

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optim zed using an Abstract Plan (I D : 832005995).

If you run queries using the plan clause added to a SQL statement,
showplan displays:

Opti m zed using the Abstract Plan in the PLAN cl ause.

You can use noexec mode to capture abstract plans without actually
executing the queries. If noexec modeisin effect, queries are optimized
and abstract plans are saved, but no query results are returned.

To use noexec mode while capturing abstract plans, execute any needed
procedures (such as sp_add_gpgroup) and other set options (such as set
plan dump) before enabling noexec mode. Thefollowing example showsa
typical set of steps:

sp_add_qgpgroup pubs_dev

go
set plan dunp pubs_dev on

go
set noexec on

go
sel ect type, sum(price) fromtitles group by type

go

If set forceplan on isin effect, and query association isalso enabled for the
session, forceplan isignored if afull abstract plan is used to optimize the
query. If apartial plan does not completely specify the join order:

» Firgt, thetablesin the abstract plan are ordered, as specified.
» Theremaining tables are ordered as specified in the from clause.

» Thetwo lists of tables are merged.

689

Server-wide abstract plan capture and association Modes

Server-wide abstract plan capture and association

Modes

A System Administrator can enabl e server-wide plan capture, association,
and replacement modes with these configuration parameters:

e abstract plan dump — enables dumping to the default abstract plans
capture group, ap_stdout.

e abstract plan load — enables loading from the default abstract plans
loading group, ap_stdin.

e abstract plan replace —when plan dump mode is also enabled, enables
plan replacement.

e abstract plan cache — enables caching of abstract plan hash IDs;
abstract plan load must also be enabled. See “set plan exists check
option” on page 688 for more information.

By default, these configuration parameters are set to 0, which means that
capture and association modes are off. To enable a mode, set the
configuration valueto 1:

sp_configure "abstract plan dunmp", 1

Enabling any of the server-wide abstract plan modesis dynamic; you do
not have to reboot the server.

Server-wide capture and association allows the System Administrator to
capture all plansfor all users on a server. You cannot override he server-
wide modes at the session level.

Creating plans using SQL

690

You can directly specify the abstract plan for a query by:
e Using the create plan command

e Adding the plan clause to select, insert...select, update, delete and
return commands, and to if and while clauses

For information on writing plans, see Chapter 29, “ Abstract Query Plan
Guide.”

CHAPTER 30 Creating and Using Abstract Plans

Using create plan

The create plan command specifies the text of a query, and the abstract
plan to save for the query.

This example creates an abstract plan:

create plan
"sel ect avg(price) fromtitles"

"(plan
(i_scan type_price_ix titles)
()
X
Theplanissavedinthe current active plan group. You can also specify the
group name:

create plan
"sel ect avg(price) fromtitles"
"(plan
(i_scan type_price_ix titles)
()
X
into dev_pl ans
If aplan already existsfor the specified query inthe current plan group, or
the plan group that you specify, you must first enable replace mode in
order to overwrite the existing plan.

If you want to seethe plan ID that is used for aplan you create, create plan
can return the ID as avariable. You must declare the variablefirst. This
example returns the plan ID:

declare @d int
create plan
"sel ect avg(price) fromtitles"
"(plan
(i_scan type_price_ix titles)
()
K
into dev_pl ans
and set @d
select @d

When you use create plan, the query in the plan is not executed. This
means that:

¢ Thetext of the query is not parsed, so the query is not checked for
valid SQL syntax.

691

Creating plans using SQL

e Theplansare not checked for valid abstract plan syntax.

e Theplans are not checked to determine whether they are compatible
with the SQL text.

To guard against errors and problems, you should immediately executethe
specified query with showplan enabled.

Using the plan Clause

You can use the plan clause with the following SQL statements to specify
the plan to use to execute the query:

o select

o insert...select

* delete
* update
o f

* while

* return

This exampl e specifies the plan to use to execute the query:

sel ect avg(price) fromtitles
pl an
" (plan
(i_scan type_price_ix titles)
()
)ll
When you specify an abstract plan for aquery, the query is executed using
the specified plan. If you have showplan enabled, this message is printed:

Optim zed using the Abstract Plan in the PLAN cl ause.

When you use the plan clause with aquery, any errorsin the SQL text, the
plan syntax, and any mismatches between the plan and the SQL text are
reported aserrors. For example, this plan omitsthe empty parenthesesthat
specify the step of returning the aggregate:

/* step mssing! */

sel ect avg(price) fromtitles

pl an
" (plan

692

CHAPTER 30 Creating and Using Abstract Plans

(i_scan type_price titles)
)II
It returns the following message:

Msg 1005, Level 16, State 1:

Server ‘snj’, Line 2:

Abstract Plan (AP) : The nunber of operands of the PLAN operator
inthe AP differs fromthe nunber of steps needed to conpute the
query. The extra itens will be ignored. Check the AP syntax and
its correspondence to the query.

Plans specified with the plan clause are saved in sysqueryplans only if plan
capture is enabled. If aplan for the query already existsin the current
capture group, you must enable replace modein order to replace an
existing plan.

693

Creating plans using SQL

694

CHAPTER 31

System procedures for managing abstract plans

Managing Abstract Plans with

System Procedures

This chapter provides an introduction to the basi ¢ functionality and use of
the system procedures for working with abstract plans. For detailed
information on each procedure, see the Adaptive Server Reference

Manual.
Topic Page
System procedures for managing abstract plans 695
Managing an abstract plan group 696
Finding abstract plans 700
Managing individual abstract plans 701
Managing all plansin agroup 704
Importing and exporting groups of plans 708

The system procedures for managing abstract plans work on individual

plans or on abstract plan groups.

¢ Managing an abstract plan group
* sp_add_gpgroup
° sp_drop_quroup
* sp_help_gpgroup

* sp_rename_gpgroup
¢ Finding abstract plans
* sp_find_gplan
e Managing individual abstract plans
* sp_help_gplan

695

Managing an abstract plan group

* sp_copy_gplan
e sp_drop_gplan

* sp_cmp_gplans
* sp_set_gplan
e Managing al plansin agroup
* sp_copy_all_gplans
e sp_cmp_all_gplans
e sp_drop_all_gplans
e Importing and exporting groups of plans
* sp_export_gpgroup

e sp_import_gpgroup

Managing an abstract plan group

Creating a group

696

You can use system procedures to create, drop, rename, and provide
information about an abstract plan group.

sp_add_gpgroup creates and names an abstract plan group. Unlessyou are
using the default capture group, ap_stdout, you must create a plan group
before you can begin capturing plans. For example, to start saving plansin
agroup called dev_plans, you must create the group, then issuethe set plan
dump command, specifying the group name:

sp_add_gpgroup dev_pl ans

set plan dunp dev_pl ans on
[*SQL queries to capture*/

Only a System Administrator or Database Owner can add abstract plan
groups. Once agroup iscreated, any user can dump or load plansfrom the

group.

CHAPTER 31 Managing Abstract Plans with System Procedures

Dropping a group
sp_drop_gpgroup drops an abstract plan group.
The following restrictions apply to sp_drop_gpgroup:

¢ Only aSystem Administrator or Database Owner can drop abstract
plan groups.

¢ You cannot drop agroup that contains plans. To removeall plansfrom
agroup, use sp_drop_all_gplans, specifying the group name.

« You cannot drop the default abstract plan groups ap_stdin and
ap_stdout.

This command drops the dev_plans plan group:

sp_drop_qpgroup dev_pl ans

Getting information about a group

sp_help_gpgroup printsinformation about an abstract plan group, or about
all abstract plan groupsin a database.

When you use sp_help_gpgroup without agroup name, it prints the names
of all abstract plan groups, the group 1Ds, and the number of plansin each

group:

sp_hel p_gpgroup
Query plan groups in database ‘ pubtune’

G oup G D Pl ans

ap_stdin 1 0
ap_st dout 2 2
p_prod 4 0
priv_test 8 1
pt est 3 51
ptest 2 7 189

When you use sp_help_gpgroup with a group name, the report provides
statistics about plans in the specified group. This example reports on the
group ptest2:

sp_hel p_qgpgroup ptest2
Query plans group 'ptest2’, AdD 7

Total Rows Total QueryPl ans

697

Managing an abstract plan group

698

452 189
sysquerypl ans rows consunption, nunber of query
pl ans per row count

Rows Pl ans
5 2
3 68
2 119
Query plans that use the nbst sysqueryplans rows
Rows Pl an

5 1932533918
5 1964534032

123
There is no hash key collision in this group.

When reporting on an individual group, sp_help_gpgroup reports:

e Thetotal number of abstract plans, and thetotal number of rowsinthe
sysqueryplans table.

e The number of plansthat have multiple rows in sysqueryplans. They
are listed in descending order, starting with the plans with the largest
number of rows.

e Information about the number of hash keys and hash-key collisions.
Abstract plans are associated with queries by a hashing algorithm
over the entire query.

When a System Administrator or the Database Owner executes
sp_help_gpgroup, the procedure reports on all of the plansin the database
or in the specified group. When any other user executes sp_help_gpgroup,
it reports only on plans that he or she owns.

sp_help_gpgroup provides several report modes. The report modes are;

Mode Information returned

full The number of rows and number of plansin the group, the number of
plansthat use two or more rows, the number of rowsand plan IDsfor
the longest plans, and number of hash keys, and has- key collision
information. Thisis the default report mode.

stats All of the information from the full report, except hash-key
information.

CHAPTER 31 Managing Abstract Plans with System Procedures

Tot al

Mode

Information returned

hash

The number of rows and number of abstract plans in the group, the
number of hash keys, and hash-key collision information.

list

The number of rows and number of abstract plans in the group, and
thefollowinginformation for each query/plan pair: hashkey, planiD,
first few characters of the query, and the first few characters of the
plan.

queries

The number of rows and number of abstract plans in the group, and
thefollowing information for each query: hash key, plan ID, first few
characters of the query.

plans

The number of rows and number of abstract plans in the group, and
the following information for each plan: hash key, plan ID, first few
characters of the plan.

counts

The number of rows and number of abstract plans in the group, and
the following information for each plan: number of rows, number of
characters, hash key, plan ID, first few characters of the query.

This example shows the output for the counts mode:

sp_hel p_qgpgroup ptestl, counts
Query plans group 'ptestl’, AdD 3

Rows Tot al

QueryPl ans

Query plans in this group

Rows Chars
1801454852 876530156 select title fromtitles ..
476063777 700529529 sel ect au_l nane, au_fnane. ..
444226348 652529358 sel ect aul.au_l nane, aul...
792078608 716529586 sel ect au_| nane, au_fnane..
789259291 684529472 sel ect aul.au_l nanme, aul....
1929666826 668529415 sel ect au_l| nane, au_fnane...
169283426 860530099 select title fromtitles ...
571605257 524528902 sel ect pub_nanme from publ. ..
845230887 764529757 del ete sal esdetail where ..
846937663 796529871 del ete sal esdetail where ...
1400470361 732529643 update titles set price =. ..

NWWWWwWwwWwwwww

hashkey

699

Finding abstract plans

Renaming a group

A System Administrator or Database Owner can rename an abstract plan
group with sp_rename_gpgroup. This example changes the name of the
group from dev_plans to prod_plans:

sp_rename_qgpgroup dev_pl ans, prod_pl ans

The new group name cannot be the name of an existing group.

Finding abstract plans

700

sp_find_gplan searches both the query text and the plan text to find plans
that match a given pattern.

This example finds all plans where the query includes the string “from
titles’:
sp_find_gplan "% romtitles%
This example searches for al abstract plans that perform a table scan:
sp_find_gplan "% _scan%

When aSystem Administrator or Database Owner executessp_find_gplan,
the procedure examines and reports on plans owned by all users. When
other users execute the procedure, it searches and reports on only plans
that they own.

If you want to search just one abstract plan group, specify the group name
with sp_find_gplan. This example searches only the test_plans group,
finding al plansthat use a particular index:

sp_find_gplan "% _scan title_id_ix%, test_plans

For each matching plan, sp_find_gplan printsthe group ID, plan ID, query
text, and abstract plan text.

CHAPTER 31 Managing Abstract Plans with System Procedures

Managing individual abstract plans

You can use system procedures to print the query and text of individual
plans, to copy, drop, or compare individual plans, or to change the plan
associated with a particular query.

Viewing a plan

sp_help_gplan reports on individual abstract plans. It provides three types
of reports that you can specify: brief, full, and list. The brief report prints
only thefirst 78 characters of the query and plan; use full to see the entire
query and plan, or list to display only the first 20 characters of the query
and plan.

This example prints the default brief report:

sp_hel p_qgpl an 588529130
gid hashkey id

8 1460604254 588529130

select min(price) fromtitles
pl an

(plan
(i_scan type_price titles)
()

)
(prop titles

(parallel

A System Administrator or Database Owner can use sp_help_gplan to
report on any planin the database. Other users can only view the plansthat
they own.

sp_help_gpgroup reportson al plansin agroup. For moreinformation see
“Getting information about a group” on page 697.

701

Managing individual abstract plans

Copying a plan to another group

sp_copy_gplan copies an abstract plan from one group to another existing
group. This example copies the plan with plan ID 316528161 from its
current group to the prod_plans group:

sp_copy_qgpl an 316528161, prod_pl ans

sp_copy_gplan checks to make sure that the query does not already exist
in the destination group. If apossible conflict exists, it runs
sp_cmp_gplans to check plans in the destination group. In addition to the
message printed by sp_cmp_gplans, sp_copy_gplan prints messages when:

e Thequery and plan you are trying to copy aready existsin the
destination group

e Another plan in the group has the same user ID and hash key

e Another plan in the group has the same hash key, but the queries are
different

If thereisahash-key collision, the planiscopied. If the plan already exists
inthedestination group or if it would give an association key collision, the
plan is not copied. The messages printed by sp_copy_gplan contain the
plan ID of the plan in the destination group, so you can use sp_help_gplan
to check the query and plan.

A System Administrator or the Database Owner can copy any abstract
plan. Other users can copy only plansthat they own. The original plan and
group are not affected by sp_copy_gplan. The copied plan is assigned a
new plan ID, the ID of the destination group, and the user ID of the user
who ran the query that generated the plan.

Dropping an individual abstract plan

702

sp_drop_gplan drops individual abstract plans. This example drops the
specified plan:

sp_drop_qgpl an 588529130

A System Administrator or Database Owner can drop any abstract planin
the database. Other users can drop only plans that they own.

To find abstract plan IDs, use sp_find_gplan to search for plansusing a
pattern from the query or plan, or sp_help_gpgroup to list the plansin a

group.

CHAPTER 31 Managing Abstract Plans with System Procedures

Comparing two abstract plans

Given two plan IDs, sp_cmp_gplans compares two abstract plans and the
associated queries. For example:

sp_cnmp_qgpl ans 588529130, 1932533918

sp_cmp_gplans prints one message reporting the comparison of the query,
and a second message about the plan, as follows:

e For thetwo queries, one of:
¢ Thequeries are the same.
e Thequeries are different.
¢ Thequeries are different but have the same hash key.
¢ Fortheplans
e Thequery plans are the same.
e Thequery plans are different.
This example compares two plans where the queries and plans both match:

sp_cnp_qgpl ans 411252620, 1383780087
The queries are the sane.
The query plans are the sane.

This example compares two plans where the queries match, but the plans
are different:

sp_cnmp_gpl ans 2091258605, 647777465
The queries are the sane.
The query plans are different.

sp_cmp_gplans returns a status value showing the results of the
comparison. The status values are shown in Table 31-1

Table 31-1: Return status values for sp_cmp_gplans

Return value Meaning

0 The query text and abstract plans are the same.

+1 The queries and hash keys are different.

+2 The queries are different, but the hash keys are the same.
+10 The abstract plans are different.

100 One or both of the plan IDs does not exist.

A System Administrator or Database Owner can compare any two abstract
plansin the database. Other users can compare only plans that they own.

703

Managing all plans in a group

Changing an existing plan

Managing all pla

Copying all plans in

704

sp_set_gplan changes the abstract plan for an existing plan ID without
changing the ID or the query text. It can be used only when the plan text
is 255 or fewer characters.

sp_set _gpl an 588529130, "(i_scan title_ix titles)"

A System Administrator or Database Owner can change the abstract plan
for any saved query. Other users can modify only plans that they own.

When you execute sp_set_gplan, the abstract plan is not checked against
the query text to determine whether the new plan isvalid for the query, or
whether the tables and indexes exist. To test the validity of the plan,
execute the associated query.

You can also use create plan and the plan clause to specify the abstract plan
for aquery. See“ Creating plans using SQL" on page 690.

nsin agroup

These system procedures hel p manage groups of plans:
e sp_copy_all_gplans

e sp_cmp_all_gplans

* sp_drop_all_gplans

agroup

sp_copy_all_gplans copies all of the plansin one abstract plan group to
another group. This example copies al of the plans from the test_plans
group to the helpful_plans group:

sp_copy_al | _gpl ans test_pl ans, hel pful _pl ans

Thehelpful_plans group must exist beforeyou executesp_copy_all_gplans.
It can contain other plans.

sp_copy_all_gplans copies each plan in the group by executing
sp_copy_gplan, so copying a plan may fail for the same reasons that
sp_copy_gplan might fail. See “Comparing two abstract plans’ on page
703.

CHAPTER 31 Managing Abstract Plans with System Procedures

Each planis copied asaseparatetransaction, and failureto copy any single
plan does not cause sp_copy_all_gplans to fail. If sp_copy_all_gplans fails
for any reason, and has to be restarted, you see a set of messages for the
plansthat havea ready been successfully copied, telling you that they exist
in the destination group.

A new plan ID is assigned to each copied plan. The copied plans have the
original user’'s|D. To copy abstract plans and assign new user IDs, you
must use sp_export_gpgroup and sp_import_gpgroup. See “Importing and
exporting groups of plans’ on page 708.

A System Administrator or Database Owner can copy al plansin the
database. Other users can copy only plans that they own.

Comparing all plans in a group
sp_cmp_all_gplans compares all abstract plansin two groups and reports:
» The number of plans that are the same in both groups

» Thenumber of plansthat have the same association key, but different
abstract plans

* Thenumber of plans that are present in one group, but not the other
This example compares the plansin ap_stdout and ap_stdin:

sp_cnp_al |l _qgpl ans ap_stdout, ap_stdin
If the two query plans groups are large, this mght take sone
tine.
Query plans that are the sane
count

338
Different query plans that have the same association key

25

Query plans present only in group 'ap_stdin’

705

Managing all plans in a group

706

With the additional specification of a report-mode parameter,
sp_cmp_all_gplans provides detailed information, including the IDs,
queries, and abstract plans of the queriesin the groups. The mode
parameter |ets you get the detailed information for al plans, or just those
with specific types of differences. Table 31-2 shows the report modes and
what type of information is reported for each mode.

Table 31-2: Report modes for sp_cmp_all_gplans

Mode Reported information

counts The counts of: plansthat are the same, plans that have the same
association key, but different groups, and plansthat exist in one
group, but not the other. Thisis the default report mode.

brief Theinformation provided by counts, plusthe IDs of the abstract
plans in each group where the plans are different, but the
association key isthe same, and the IDs of plansthat arein one
group, but not in the other.

same All counts, plusthe IDs, queries, and plansfor al abstract plans
where the queries and plans match.

diff All counts, plusthe IDs, queries, and plansfor al abstract plans
where the queries and plans are different.

first All counts, plusthe IDs, queries, and plansfor al abstract plans
that arein the first plan group, but not in the second plan group.

second All counts, plusthe IDs, queries, and plansfor al abstract plans
that are in the second plan group, but not in the first plan group.

offending All counts, plusthe IDs, queries, and plansfor al abstract plans

that have different association keys or that do not exist in both
groups. Thisisthe combination of the diff, first, and second
modes.

full All counts, plusthelDs, queries, and plansfor all abstract plans.
Thisis the combination of same and offending modes.

This example shows the brief report mode:

sp_cnp_al |l _gpl ans ptestl, ptest2, brief
If the two query plans groups are large, this might take
some tinmne.
Query plans that are the sane
count
39
Different query plans that have the same association key

CHAPTER 31 Managing Abstract Plans with System Procedures

ptestl ptest2

764529757 1580532664
780529814 1596532721
796529871 1612532778
908530270 1724533177
Query plans present only in group 'ptestl’

524528902
1292531638
1308531695

Query plans present only in group 'ptest2’

count
1
id
2108534545

Dropping all abstract plans in a group

sp_drop_all_gplans dropsall abstract plansin agroup. Thisexampledrops
all abstract plansin the dev_plans group:

sp_drop_al |l _qpl ans dev_pl ans

707

Importing and exporting groups of plans

When a System Administrator or the Database Owner executes
sp_drop_all_gplans, all plans belonging to all users are dropped from the
specified group. When another user executesthis procedure, it affectsonly
the plans owned by that users.

Importing and exporting groups of plans

sp_export_gpgroup and sp_import_gpgroup copy groups of plans between
sysqueryplans and a user table. This allows a System Administrator or
Database Owner to:

» Copy abstract plans from one database to another on the same server

» Create atablethat can be copied out of the current server with bep,
and copied into another server

* Assign different user IDsto existing plans in the same database

Exporting plans to a user table

708

sp_export_gpgroup copiesall plansfor aspecific user from an abstract plan
group to a user table. This example copies plans owned by the Database
Owner (dbo) from the fast_plans group, creating atable called transfer:

sp_export_qgpgroup dbo, fast_plans, transfer

Sp_export_gpgroup USeS select...into to create a table with the same
columns and datatypes as sysqueryplans. If you do not have the

select into/bulkcopy/plisort option enabled in the database, you can specify
the name of another database. This command creates the export table in
tempdb:

sp_export_gpgroup mary, ap_stdout, "tenpdb..nplans”

The table can be copied out using bcp, and copied into a table on another
server. The plans can also be imported to sysqueryplans in another
database on the same server, or the plans can be imported into
sysqueryplans in the same database, with a different group name or user
ID.

CHAPTER 31 Managing Abstract Plans with System Procedures

Importing plans from a user table

sp_import_gpgroup copies plansfrom tables created by sp_export_gpgroup
into agroupin sysqueryplans. Thisexample copiesthe plansfromthetable
tempdb..mplans into ap_stdin, assigning the user ID for the Database
Owner:

sp_i mport _gpgroup "tenpdb. . nplans", dbo, ap_stdin

You cannot copy plansinto a group that already contains plans for the
specified user.

709

Importing and exporting groups of plans

710

CHAPTER 32

Keywords

Operands

Abstract Plan Language
Reference

This chapter describes the operators and other language elementsin the

abstract plan language.

Topic Page
Keywords 711
Operands 711
Schema for examples 712

The following words are keywords in the abstract query plan language.
They are not reserved words, and do not conflict with the names of tables
or indexes used in abstract plans. For example, atable or index may be

named hints.

The following operands are used in the abstract plan syntax statements:

711

Schema for examples

Derived tables

Table 32-1: Identifiers used

Identifier Describes

table name The name of abasetable, that is, auser or system table

correlation_name The correlation name specified for atable in aquery

derived_table A table that results from the scan of a stored table

stored_table A base table or aworktable

worktable name The name of aworktable

view_name The name of aview

index_name The name of an index

subquery _id Aninteger identifying the order of the subqueriesin the
query

table_name and view_name can be specified using the notation
database.owner.object_name.

A derived tableis aresult of accessto a stored table during query
execution. It can be:

e Theresult set generated by the query

« Anintermediate result during query execution; that is, theresult of the
join of thefirst two tablesin thejoin order, which isthen joined with
athird table

Derived tablesresult from one of the scan operators that specify the access
method: scan, i_scan, or t_scan, for example, (i_scan title_id_ix titles).

Schema for examples

712

To simplify the sample abstract plan examples, the following tables are
used in this section:

create table t1 (cl11 int, cl12 int)
create table t2 (c21 int, c22 int)
create table t3 (c31 int, ¢32 int)

The following indexes are used:

create index i_cll on t1(cll)

CHAPTER 32 Abstract Plan Language Reference

g_join

Description

Syntax

Parameters

Return value

Examples

create index i_cl2 on t1(cl2)
create index i_cll cl12 on t1(cll, cl2)
create index i_c21 on t2(c2l)
create index i_c22 on t2(c22)
create index i_c31 on t3(c3l)
create index i_c32 on t3(c32)

Specifiesthejoin of two or more derived tableswithout specifyingthejoin
type (nested-loop or sort-merge).

(g_join derived_tablel derived_table2
)

(g_join (derived_tablel)
(derived_table2)

(”derived_tableN)
)
derived_tablel...derived tableN
are the derived tables to be united.

A derived table that is the join of the specified derived tables.
Example 1

sel ect *
fromtl, t2
where ¢c21 =0
and c22 = c12

(g_join
(i_scani_c211t2)
(i_scani_c12 t1)

)
Tablet2 isthe outer table, and t1 the inner tablein the join order.
Example 2

sel ect *
fromtl, t2, t3
where c21 = 0
and c22 = cl12

713

g_join

and cl1l = c31

(g_join

(i_scani_c211t2)
(i_scani_c12 t1)
(i_scani_c311t3)

)

Tablet2 isjoined with t1, and the derived table is joined with t3.

Usage e Theg_join operator isageneric logical operator that describes all
binary joins (inner join, outer join, or existence join).

e Theg_join operator is never used in generated plans; nl_g_join and
m_g_join operators indicate the join type used.

e The optimizer chooses between a nested-loop join and a sort-merge
joinwhentheg_join operator isused. To specify asort-mergejoin, use
m_g_join. To specify a nested-loop join, use nl_g_join.

e Thesyntax providesashorthand method of described ajoininvolving
multiple tables. This syntax:

(gjoin
(scan
(scan
(scan
(scan
(scan

)
is shorthand for:

(g_join

t1)
t2)
t3)

tN-1)
tN)

(g_join

)

(scan

714

(g_join
(g_join
(scan t1)
(scan t2)

)
(scan t3)
)

(scan tN-1)

tN)

CHAPTER 32 Abstract Plan Language Reference

See also

hints

Description

Syntax

Parameters

)

* If g_join isused to specify the join order for some, but not al, of the
tablesin a query, the optimizer uses the join order specified, but may
insert other tables between the g_join operands. For example, for this
query:

sel ect *
fromtl, t2, t3
where ...

the following partial abstract plan describes only the join order of t1
and t2:

(gjoin
(scan t2)
(scan t1)

)

The optimizer can choose any of the threejoin orders: t3-t2-t1, t2-t3-
t1 or t2-t1-t3.

» Thetablesarejoined in the order specified in the g_join clause.

» If setforceplan onisineffect, and query association isalso enabled for
the session, forceplan isignored if afull abstract plan is used to
optimize the query. If apartial plan does not completely specify the
join order:

» Firgt, thetablesin the abstract plan are ordered as specified.
» Theremaining tables are ordered as specified in the from clause.
» Thetwo lists of tables are merged.

m_g_join, nl_g_join

Introduces and groupsitemsin a partial abstract plan.
(hints (derived_table)

)

derived table
is one or more expressions that generate a derived table.

715

i_scan

Return value

Examples

Usage

|_scan

Description

716

A derived table.

sel ect *

fromtl, t2

where c12 = c21
and cl11 > 0
and c22 < 1000

(hints
(g_join
(t_scan t2)
(i_scan () t1)

)

Specifiesapartia plan, including atable scan on t2, the use of someindex
on t1, and the join order t1-t2. Theindex choice for t1 and the type of join
(nested-loop or sort-merge) is left to the optimizer.

The specified hints are used during query optimization.

The hints operator appears as the root of a partial abstract plan that
includes multiple steps. If apartia plan contains only one expression,
hints is optional.

The hints operator does not appear in plans generated by the
optimizer; these are always full plans.

Hints can be associated with queries:
« By changing the plan for an existing query with sp_set_gplan.

* By specifying the plan for a query with the plan clause. To save
the query and hints, set plan dump must be enabled.

e By using the create plan command.

When hints are specified in the plan clause for a SQL statement, the
plans are checked to be sure they are valid. When hints are specified
using sp_set_gplan, plans are not checked before being saved.

Specifies an index scan of a basetable.

CHAPTER 32 Abstract Plan Language Reference

Syntax

Parameters

Return value

Examples

Usage

(i_scan index_name base_table)
(i_scan () base_table)

index_name
isthe name or index ID of the index to use for an index scan of the
specified stored table. Use of empty parentheses specify that an index
scan (rather than table scan) isto be performed, but |eaves the choice of
index to the optimizer.

base table
is the name of the base table to be scanned.

A derived table produced by a scan of the base table.
Example 1

select * fromtl where c11 =0

(i_scani_cl11 t1)

Specifies the use of index i_c11 for a scan of t1.

Example 2
sel ect *
fromtl, t2
where cl11 = 0
and c22 = 1000
and cl12 = c21
(g_join
(scan t2)
(i_scan () t1)
)

Specifies a partia plan, indicating the join order, but allowing the
optimizer to choose the access method for t2, and the index for t1.

select * fromtl where c12 = 0

(i_scan 2 t1)
Identifies the index on t1 by index ID, rather than by name.

¢ Theindex isused to scan thetable, or, if noindex is specified, an
index is used rather than a table scan.

717

See also

In
Description

Syntax

Parameters

Examples

718

e Use of empty parentheses after thei_scan operator allows the
optimizer to choose the index or to perform atable scan if no index
exists on the table.

* Whenthei_scan operator isspecified, acoveringindex scanisalways
performed when all of the required columns areincluded in theindex.
No abstract plan specification is needed to describe a covering index
scan.

e Useof thei_scan operator suppresses the choice of the reformatting
strategy and the OR strategy, even if the specified index does not
exist. The optimizer chooses another useful index and an advisory
messageis printed. If no index isspecified for i_scan, or if noindexes
exist, atable scan is performed, and an advisory message is printed.

« Although specifying an index using the index ID isvalid in abstract
query plans, using an index ID is not recommended. If indexes are
dropped and re-created in a different order, plans become invalid or
perform suboptimally.

scan, t_scan

Identifies the location of atable that is specified in a subquery or view.

(in ([subg subquery_id | view view_name])

subg subquery_id
isan integer identifying a subquery. In abstract plans, subquery
numbering is based on the order of the leading open parentheses for the
subqueries in a query.

view view_name
isthe name of aview. The specification of database and owner namein
the abstract plan must match the usage in the query in order for plan
association to be performed.

Example 1

create view vl as
select * fromtl

select * fromvl

CHAPTER 32 Abstract Plan Language Reference

(t_scan (table t1 (in (viewvl))))
Identifies the view in which table t1 is used.
Example 2

sel ect *

fromt2

where c21

in (select cl12 fromt1l)

(g_join
(t_scan t2)
(t_scan (table t1 (in (subg 1))))

)
| dentifies the scan of table t1 in subquery 1.

Example 3

create view v9

as

sel ect *

fromtl

where cl1l1l in (select c21 fromt2)

create view v10

as

select * fromv9

where cl1l1l in (select cl1ll fromv9)

select * fromv10, t3
where cl11 in
(select c11 fromv10 where cl12 = t3.c31)

t3)

i_c21 (table t2 (in (subg 1) (viewv9) (viewvl0))))
i_cll (table tl (in (viewv9) (viewvl0))))

i_cll (table tl (in (viewv9) (viewvl0) (subg 1))))

719

Iru

i_scan i_cll (table tl1 (in (viewv9) (subgq 1) (viewvl0))))

i_scani_c21 (tablet2 (in(subgl1) (viewv9) (subg1l) (viewvl0)
i_scani_cll (tabletl (in(viewv9) (subg1l) (viewv1l0) (subg 1)
i_scani_c21 (tablet2 (in(subgl1) (viewv9) (viewv1l0) (subg 1)
_scan i_c21 (table t2(in(subg 1)(viewv9)(subq 1)(view v10)

c
o —

q1))))
An example of multiple nesting of views and subqueries.
Usage e ldentifies the occurrence of atable in view or subqueryof the SQL
query.
* Thein list has theinnermost items to the left, near the table’'s name

(itself the deeply nested item), and the outermost items (the ones

occurring in the top level query) to theright. For example, the

qualification:
(table t2 (in (subg 1) (view v9) (subg 1) (view
v10) (subg 1)))

can be read in either direction:

* Reading left to right, starting from the table: the base tablet2 as
scanned in thefirst subquery of view v9 , which occursin thefirst
subquery of view v10 , which occursin the first subquery of the
main query

* Reading from right to left, that is, starting from the main query:
inthe main query there’'s afirst subquery, that scansthe view v10
, that contains afirst subquery that scansthe view v9 , that
contains afirst subquery that scans the base table t2

See also nested, subq, table, view
lru
Description Specifies LRU cache strategy for the scan of a stored table.
Syntax (prop table_name

(Iru)
Parameters table_name

is the table to which the property is to be applied.

Examples select * fromt1l

720

CHAPTER 32 Abstract Plan Language Reference

Usage

See also

m_g_join
Description

Syntax

Parameters

Return value

Examples

(prop tl
(Iru)
)

Specifies the use of LRU cache strategy for the scan of t1.
* LRU strategy is used in the resulting query plan.

» Partia plans can specify scan properties without specifying other
portions of the query plan.

* Full query plans always include all scan properties.

mru, prop

Specifies amerge join of two derived tables.

(m_g_join (
(derived_tablel)
(derived_table2)

)

derived tablel...derived_tableN
are the derived tables to be united. derived_tablel is always the outer
table and derived_table2 isthe inner table

A derived table that is the join of the specified derived tables.
Example 1

select tl1l.cll, t2.c21
fromtl, t2, t3
where tl.cll =t2.c21
and t1.c11 = t3.c31

(nl _g_join
(mg_join
(i_scan i_c31t3)
(i_scan i_cl1l t1)
)
(t_scan t2)

721

m_g_join

Specifiesaright-mergejoin of tablest1 and t3, followed by a nested-loop
join with tablet2.

Example 2

select * fromtl, t2, t3
where t1.cl11 =t2.¢c21 and t1.c11 =1t3.¢c31
and t2.c22 =7

(nl_g_join
(mg_join
(i_scani_c21t2)
(i_scani_cl11 t1)
)
(i_scani_c311t3)
)

Specifies afull-mergejoin of tablest2 (outer) and t1 (inner), followed in
the join order by a nested-loop join with t3.

Example 3

sel ect cl11, c22, c32
fromtl, t2, t3
where t1.cl11 = t2.c21
and t2.¢c22 = t3.¢c32

(mg_join
(nl _g_join
(i_scan i_cl1l1 t1)
(i_scan i_cl1l2 t2)
)

(i_scan i_c32_ix t3)

)
Specifies anested-loop join of t1 and t2, followed by amerge join with 3.
Usage e Thetablesarejoined in the order specified in the m_g_join clause.

e The sort step and worktable required to process sort-merge join
queries are not represented in abstract plans.

e |If them_g_join operator is used to specify ajoin that cannot be
performed as a merge join, the specification is silently ignored.

See also g_join,nl_g join

722

CHAPTER 32 Abstract Plan Language Reference

mru
Description

Syntax

Parameters

Examples

Usage

See also

nested

Description

Syntax

Parameters

Specifies MRU cache strategy for the scan of a stored table.
(prop table_name
(' mru)
)
table_name
is the table to which the property is to be applied.

select * fromt1l

(prop tl
(nmu)
)
Specifies the use of MRU cache strategy for the table.
 MRU strategy is specified in the resulting query plan

» Partia plans can specify scan properties without specifying other
portions of the query plan.

» Generated query plans always include all scan properties.

» |If sp_cachestrategy has been used to disable MRU replacement for a
table or index, and the query plan specifies MRU, the specificationin
the abstract plan is silently ignored.

[ru, prop

Describes the nesting of subqueries on a derived table.

(nested
(derived_table)
(' subquery_specification)
)
derived table
is the derived table over which to nest the specified subquery.

subquery_specification
is the subquery to nest over derived table

723

nested

Return value A derived table.
Examples Example 1

select cl1l1l fromtl
where cl2 =
(select c21 fromt2 where c22 = t1l.cll)

(nested
(t_scan tl)
(subg 1
(t_scan (table t2 (in (subg 1))))
)
)
A single nested subquery.
Example 2
select cll fromtl
where cl12 =
(select c21 fromt2 where c22 = t1l.cll)
and cl2 =
(select ¢31 fromt3 where ¢32 = t1.cll)
(nested
(nested
(t_scan tl)
(subg 1
(t_scan (table t2 (in (subg 1))))
)
)
(subqg 2
(t_scan (table t3 (in (subg 2))))
)
)

The two subqueries are both nested in the main query.
Example 3

select cl1l1l fromtl
where c12 =
(select c21 fromt2 where c22 =
(select ¢31 fromt3 where ¢32 =t1.cll))

724

CHAPTER 32 Abstract Plan Language Reference

(nested

(t_scan tl)

(

Usage

See also

nl_g join
Description

Syntax

Parameters

Return value

Examples

(nested

(t_scan (table t2 (in (subg 1))))
(subg 2

(t_scan (table t3 (in (subg2))))
)

A level 2 subquery nested into alevel 1 subquery nested in the main query.

¢ Thesubquery is executed at the specified attachment point in the
query plan.

* Materialized and flattened subqueries do not appear under a nested
operator. See subg on subg on page 734 for examples.

in, subq

Specifies a nested-loop join of two or more derived tables.

(nl_g_join (derived_tablel)
(derived_table2)

(derived_tableN)
)
derived tablel...derived_tableN
are the derived tables to be united.
A derived table that is the join of the specified derived tables.
Example 1

sel ect *
fromtl, t2
where c21 = 0
and c22 = cl12

(nl _g_join
(i_scani_c21t2)

725

parallel

Usage

See also

parallel

Description

Syntax

Parameters

Examples

726

(i_scani_cl12 t1)
)

Tablet2 isthe outer table, and t1 the inner table in the join order.
Example 2

sel ect *
fromtl, t2, t3
where c21 = 0

and c22 = cl12
and cll = c31
(nl _g_join

(i_scani_c211t2)

(i_scani_c12 t1)

(i_scani_c311t3)
)

Tablet2 isjoined with t1, and the derived table is joined with t3.
e Thetablesarejoined in the order specified in the nl_g_join clause

e Thenl_g_join operator is ageneric logical operator that describes all
binary joins (inner join, outer join, or semijoin). Thejoins are
performed using the nested-loops query execution method.

g_join,m_g join

Specifies the degree of parallelism for the scan of a stored table.
(prop table_name
(parallel degree)

table name
is the table to which the property is to be applied.

degree
isthe degree of parallelism to use for the scan.

select * fromtl

CHAPTER 32 Abstract Plan Language Reference

Usage

See also

plan

Description

Syntax

Parameters

Return value

(prop t1l
(parallel 5)
)

Specifiesthat 5 worker processes should be used for the scan of the t1
table.

» Thescan is performed using the specified number of worker
processes, if available.

» Partia plans can specify scan properties without specifying other
portions of the query plan.

» |If asaved plan specifiesthe use of anumber of worker processes, but

session-level or server-level values are different when the query is
executed:

» If theplan specifies more worker processes than permitted by the
current settings, the current settings are used or the query is
executed using a serial plan.

» Iftheplan specifiesfewer worker processesthan permitted by the
current settings, the values in the plan are used.

These changes to the query plan are performed transparently to the
user, SO ho warning messages are issued.

prop

Provides a mechanism for grouping the query plan steps of multi-step
queries, such as queries requiring worktables, and queries computing
aggregate val ues.

(plan
query_stepl

;:iﬂery_stepN

query stepl...query stepN —
specify the abstract plan steps for the execution of each step in the

query.
A derived table.

727

plan

Examples Example 1

sel ect max(cll) fromt1l
group by cl12

(plan
(store Worktabl
(t_scan tl)

)
(t_scan (work_t Worktabl))

)

Returns a vector aggregate. Thefirst operand of the plan operator creates
Worktabl and specifies atable scan of the base table. The second operand
scans the worktable to return the results.

Example 2

sel ect max(cll) fromt1l

(plan
(t_scan tl)

()
)
Returns ascalar aggregate. The last derived table is empty, because scalar
aggregates accumulate theresult valuein aninternal variable rather than a
worktable.

Example 3

sel ect *
fromtil
where cll = (select count(*) fromt2)

(plan
(i_scan i_c21 (table t2 (in_subg 1)))
(i_scani_c11 t1)

)

Specifies the execution of a materialized subquery.
Example 4

create view v3
as

728

CHAPTER 32 Abstract Plan Language Reference

Usage

See also

prefetch

Description

Syntax

select distinct * fromt3

select * fromtl, v3
where cll1 = c31

(plan
(store Worktabl

(t_scan (table t3 (in_viewv3)))

)
(nl_g_join

(t_scan tl)

(t_scan (work_t Worktabl))
)

)

Specifies the execution of a materialized view.

Tables are accessed in the order specified, with the specified access
methods.

The plan operator is required for multistep queries, including:

¢ Queriesthat generate worktables, such as queries that perform
sorts and those that compute vector aggregates

¢ Queriesthat compute scalar aggregates
¢ Queriesthat include materialized subqueries

An abstract plan for a query that requires multiple execution steps
must include operands for each step in query execution if it begins
with the plan keyword. Use the hints operator to introduce partial
plans.

hints

Specifies the |/O size to use for the scan of a stored table.

(prop table_name

(prefetch size)

729

prop

Parameters

Examples

Usage

See also

prop
Description

Syntax

730

table_name
is the table to which the property is to be applied.

size
isavaidl/Osize: 2, 4, 8 or 16.

select * fromtl

(proptl
(prefetch 16)
)

16K 1/O size is used for the scan of t1.

* The specified I/O sizeis used in the resultant query plan if apool of
that size exists in the cache used by the table.

« Partial plans can specify scan properties without specifying other
portions of the query plan.

« If large 1/O specifications in a saved plan do not match current pool
configuration or other options:

e If theplan specifies 16K 1/O, and the 16K pool does not exist, the
next largest available 1/0 size is used.

» |If sessionor server-level optionshave madelarge |/O unavailable
for the query (set prefetch for the session, or sp_cachestrategy for
the table), 2K 1/0 is used.

* If you save plansthat specify only 2K 1/O for the scan properties, and
later createlarge /O pools, enablereplace modeto savethe new plans
if you want these plansto use larger I/O sizes.

prop

Specifies properties to use for the scan of a stored table.

(prop table_name
(property_specification) ...

property_specification:

CHAPTER 32 Abstract Plan Language Reference

Parameters

Examples

Usage

See also

Sscan

Description
Syntax

Parameters

Return value

Examples

(prefetch size)
(lru | mru)
(parallel degree)

table_name
is the table to which the property is to be applied.

select * fromt1l

(t_scan tl)

(prop tl
(parallel 1)
(prefetch 16)

(lru)
)

Shows the property values used by the scan of t1.
« The specified properties are used for the scan of the table

¢ Partia plans can specify scan properties without specifying other
portions of the query plan.

¢ Generated plans include the parallel, prefetch, and cache strategy
properties used for each table in the query.

[ru, mru, parallel, prefetch

Specifies the scan of a stored table, without specifying the type of scan.

(scan stored_table)

stored table
is the name of the stored table to be scanned. It can be a base table or
worktable.

A derived table produced by the scan of the stored table.
Example 1

select * fromtl where cl11 > 10

(scan t1)

731

store

Specifiesascan of t1, leaving the optimizer to choose whether to perform
atable scan or index scan.

Example 2
sel ect *
fromtl, t2
where cl11 = 0
and c22 = 1000
and cl12 = c21
(nl _g_join
(scan t2)
(i_scani_c22 t1)
)

Specifies a partial plan, indicating the join order, but allowing the
optimizer to choose the access method for t2.

Usage e The optimizer chooses the access method for the stored table.

» Thescan operator is used when the choice of the type of scan should
be | eft to the optimizer. The resulting access method can be one of the
following:

e Afull table scan

e Anindex scan, with access to data pages

* A covering index scan, with no access to data pages
e A RID scan, used for the OR strategy

* For an example of an abstract plan that specifies the reformatting
strategy, see store.

See also i_scan, store, t_scan

store

Description Stores the results of a scan in aworktable.
Syntax (store worktable_name

([scan | i_scan | t_scan] table_name)

)

732

CHAPTER 32 Abstract Plan Language Reference

Parameters

Return value

Examples

Usage

worktable_name
is the name of the worktable to be created.

table_name
is the name of the base table to be scanned.

A worktable that is the result of the scan.

select c12, max(cll) fromtl
group by c12

(plan
(store Worktabl
(t_scan tl)

)
(t_scan (work_t Worktabl))

)

Specifies the two-step process of selecting the vector aggregate into a
worktable, then selecting the results of the worktable.

¢ The specified table is scanned, and the result is stored in a worktable
e Thelega placesfor astore operator in an abstract plan are:

¢ Under aplan or union operator, where the store operator signifies
a preprocessing step resulting in aworktable

¢ Under ascan operator (but not under ani_scan or t_scan
operator)

¢ During plan capture mode, worktables are identified as Worktabl,
Worktab2, and so on. For manually entered plans, any naming
convention can be used.

¢ The use of the reformatting strategy can be described in an abstract
plan using the scan (store ()) combination of operators. For example,
if 2 hasnoindexesandisvery large, the abstract plan below indicates
that t2 should be scanned once, viaatable scan, with the results stored
in aworktable:

sel ect *
fromtl, t2
where cl1l1 > 0
and cl12 = c21
and c22 between 0 and 10000
(nl_g_join
(i_scan i_cl1l1 t1)

733

subq

(scan (store (t_scan t2)))

)
See also scan
subq
Description Identifies a subquery.
Syntax ('subg subquery_id
)
Parameters subquery_id

isan integer identifying the subquery. In abstract plans, subquery
numbering is based on the order of the leading parenthesis for the
subqueries in a query.

Examples Example 1

select cll fromtl
where cl12 =
(select c21 fromt2 where c22 = t1.cll)

(nested
(t_scan tl)
(subg 1
(t_scan (tablet2 (in(subgl))))
)
)

A single nested subquery.
Example 2

select c11 fromtl
where c12 =
(select c21 fromt2 where c22
and cl2 =
(select ¢31 fromt3 where ¢32 = t1.cll)

t1.cl1)

(nested
(nested
(t_scan tl)
(subg 1

734

CHAPTER 32 Abstract Plan Language Reference

(t_scan (table t2 (in (
subg 1))))

)
(subg 2

(t_scan (tablet3 (in(subg2))))
)

)
The two subqueries are both nested in the main query.

Example 3

select c11 fromtl
where cl12 =
(select c21 fromt2 where c22 =
(select c31 fromt3 where ¢32 =1t1.cll))

(nested
(t_scan tl)
(subg 1
(nested
(t_scan (tablet2 (in(subg1))))
(subg 2
(t_scan (table t3 (in (subq
2))))
)
)
)

)
A level 2 subquery nested into alevel 1 subquery nested in the main query.

Usage e Thesubq operator has two meanings in an abstract plan expression:

¢ Under anested operator, it describes the attachment of a nested
subquery to atable

¢ Under anin operator, it describes the nesting of the base tables
and views that the subquery contains

« To specify the attachment of a subquery without providing a plan
specification, use an empty hint:

(nested
(t_scan t1l)
(subg 1
0

735

subq

See also

736

)

To provide a description of the abstract plan for a subquery, without
specifying its attachment, specify an empty hint as the derived table
in the nested operator:

(nested
0
(subg 1
(t_scan (table t1 (in (subg 1))))
)
)

When subqueries are flattened to ajoin, the only reference to the
subquery inthe abstract plan istheidentification of the table specified
in the subquery:

sel ect *
fromt2
where c21 in (select cl12 fromt1)
(nl_g_join
(t_scan tl)
(t_scan (table t2 (in (subg 1))))

When a subquery is materialized, the subquery appearsin the store
operation, identifying the table to be scanned during the
materialization step:

sel ect *
fromtl
where cl1l1l in (select max(c22) fromt2 group by
c21)
(plan
(store Worktabl
(t_scan (tablet2 (in(subg1))))

)
(nl_g_join
(t_scan tl)
(t_scan (work_t Worktabl))
)
)
in, nested, table

CHAPTER 32 Abstract Plan Language Reference

t scan

Description

Syntax

Parameters

Return value

Examples

Usage

See also

table

Description

Syntax

Parameters

Examples

Specifies atable scan of a stored table.

(t_scan stored_table)

stored table
is the name of the stored table to be scanned.

A derived table produced by the scan of the stored table.

select * fromtl

(t_scan tl)
Performs a table scan of t1.
¢ Instructs the optimizer to perform atable scan on the stored table.
e Specifyingt_scan forbids the use of reformatting and the OR strategy.

i_scan, scan, store

Identifies abase table that occursin asubquery or view or that is assigned
acorrelation name in the from clause of the query.

(table table_name [qualification])
(table (correlation_name table_name))

table name
isabasetable. If the query uses the database name and/or owner name,
the abstract plan must also provide them.

correlation_name
is the correlation name, if a correlation name is used in the query.

qualification
is either in (subq subquery _id) or in (view view_name).

Example 1

select * fromtl tablel, t2 table2
where tablel.cll = table2.c21

737

table

(nl _g_join
(t_scan (table (tablel t1)))
(t_scan (table (table2 t2)))

)

Tablestl and t2 are identified by reference to the correlation names used
in the query.

Example 2

select cl1l1l fromtl
where cl12 =
(select c21 fromt2 where c22 = t1l.cll)

(nested
(t_scan tl)
(subg 1
(t_scan (tablet2 (in(subgl1l))))
)
)

Table t2 in the subquery isidentified by reference to the subquery.
Example 3

create view vl
as
select * fromtl where c12 > 100

select tl1.cl11 fromtl, vi
where t1.c¢c12 = vil.cll

(nl _g_join
(t_scan tl)
(i_scan 2 (tabletl (in (viewvl))))

Tabletl inthe view isidentified by reference to the view.

Usage * The specified derived tablesin the abstract plan are matched against
the positionally corresponding tables specified in the query.

* Thetable operator isused to link table namesin an abstract planto the
corresponding table in a SQL query in queries that contain views,
subqueries, and correlation names for tables.

* Whencorrelation namesare used, all referencesto thetable, including
those in the scan properties section, are in the form:

738

CHAPTER 32 Abstract Plan Language Reference

See also

union

Description

Syntax

Parameters

Return value

Examples

(table (correlation_nane table_nane))

Thetable operator isused for all referencesto thetable, including the
scan properties for the table under the props operator.

in, subq, view

Describes the union of the two or more derived tables.

(union
derived_tablel

'Elerived_tableN

)

derived_tablel...derived tableN
is the derived tables to be united.

A derived table that is the union of the specified operands.
Example 1

select * fromtl
uni on
select * fromt2
uni on
select * fromt3

(uni on
(t_scan t1)
(t_scan t2)
(t_scan t3)
)

Returns the union of the three full table scans.
Example 2

select 1,2
uni on
select * fromt2

739

view

Usage

See also

view
Description

Syntax

Parameters

Examples

740

(uni on
()
(tscan t2)
)

Sincethefirst side of the union isnot an optimizable query, thefirst union
operand is empty.

The specified derived tablesin the abstract plan are matched against
the positionally corresponding tables specified in the query.

The union operator describes the processing for:
e union, which removes duplicate values and
e union all, which preserves duplicate values

The union operator in an abstract query plan must have the same
number of union sides asthe SQL query and the order of the operands
for the abstract plan must match the order of tablesin the query.

The sort step and worktabl e required to process union queries are not
represented in abstract plans.

If union queries list nonoptimizable elements, an empty operand is
required. A select query that has no from clauseis shown in example

i_scan, scan, t_scan

Identifies aview that contains the base table to be scanned.

view view_name

view_name

isthe name of aview specified in the query. If the query usesthe
database name and/or owner name, the abstract plan must also provides
them.

create view vl as
select * fromtl

select * fromvl

CHAPTER 32 Abstract Plan Language Reference

Usage

See also

work _t
Description

Syntax

Parameters

Return value

Examples

Usage

(t_scan (table t1 (in (viewv))))
Identifies the view in which table tl is used.

* Whenaquery includesaview, the table must beidentified using table
(tablename (in view_name)).

in, table

Describes a stored worktable.

(work_t [worktable_name
| (correlation_name worktable_name) |

worktable _name
is the name of aworktable.

correlation_name
is the correlation name specified for aworktable, if any.

A stored table.

select ¢12, max(cll) fromtl
group by c12

(plan
(store Worktabl

(t_scan tl)

)
(t_scan (work_t Worktabl))

)

Specifies the two-step process of selecting vector aggregatesinto a
worktable, then selecting the results of the worktable.

» Matchesthe stored table against awork table in the query plan.

» Thestore operator creates a worktable; the work_t operator identifies
a stored worktable for later access in the abstract plan.

741

work_t

See also

742

During plan capture mode, worktables are identified as Worktab1,
Worktab2, and so on. For manually entered plans, any naming
convention can be used.

If the scan of the worktable is never specified explicitly with a scan
operator, the worktable does not have to be named and the work_t
operator can be omitted. The following plan uses an empty scan
operator “()" in place of thet_scan and work_t specificationsused in
example

(plan
(store
(t_scan titles)
)
0
)

Correlation names for worktables are needed only for self-joined
materialized views, for example:

create view v
as
select distinct cl11l fromt1l

sel ect *
fromv vl, v v2
where ...

(plan
(store Worktabl
(t_scan (table t1 (in (viewv))))

)
(g_join
(t_scan (work_t (vl Worktabl)))
(t_scan (work_t (v2 Worktabl)))
)
)
store, view

	Performance and Tuning Guide: Volume 2 - Optimizing and Abstract Plans
	Adaptive Server Enterprise
	About This Book
	Audience
	How to use this book
	Index
	Related documents
	Other sources of information
	Sybase certifications on the Web
	For the latest information on product certifications
	For the latest information on EBFs and Updates
	To create a personalized view of the Sybase Web site (including support pages)
	Conventions
	Formatting SQL statements
	Font and syntax conventions
	Table 1: Font and syntax conventions in this manual
	Case
	Expressions
	Table 2: Types of expressions used in syntax statements
	Examples
	If you need help

	CHAPTER 17 Adaptive Server Optimizer
	Definition
	Steps in query processing
	Working with the optimizer

	Object sizes are important to query tuning
	Query optimization
	Factors examined during optimization
	Preprocessing can add clauses for optimizing
	Converting clauses to search argument equivalents
	Table 17-1: Search argument equivalents

	Converting expressions into search arguments
	Search argument transitive closure
	Join transitive closure
	Enabling join transitive closure

	Predicate transformation and factoring
	Example

	Guidelines for creating search arguments
	Search arguments and useful indexes
	Search argument syntax
	Nonequality operators
	Examples of SARGs

	How statistics are used for SARGS
	Histogram cells
	Density values
	Range cell density and total density
	How the optimizer uses densities and histograms

	Using statistics on multiple search arguments
	Default values for search arguments
	Table 17-2: Density approximations for unknown search arguments

	SARGs using variables and parameters

	Join syntax and join processing
	How joins are processed
	When statistics are not available for joins
	Density values and joins
	Multiple column joins
	Search arguments and joins on a table

	Datatype mismatches and query optimization
	Overview of the datatype hierarchy and index issues
	Comparison of numeric and decimal datatypes
	Comparing numeric types to other datatypes
	Table 17-3: Precision and scale of integer and money types

	Datatypes for parameters and variables used as SARGs
	Troubleshooting datatype mismatch problems fo SARGs

	Compatible datatypes for join columns
	Table 17-4: Indexes considered for mismatched column datatypes
	Troubleshooting datatype mismatch problems for joins

	Suggestions on datatypes and comparisons
	Forcing a conversion to the other side of a join

	Splitting stored procedures to improve costing
	Basic units of costing

	CHAPTER 18 Advanced Optimizing Tools
	Special optimizing techniques
	Specifying optimizer choices
	Specifying table order in joins
	Risks of using forceplan
	Things to try before using forceplan

	Specifying the number of tables considered by the optimizer
	Specifying an index for a query
	Risks
	Things to try before specifying an index

	Specifying I/O size in a query
	Index type and large I/O
	Table 18-1: Access methods and prefetching

	When prefetch specification is not followed
	set prefetch on

	Specifying the cache strategy
	In select, delete, and update statements

	Controlling large I/O and cache strategies
	Getting information on cache strategies

	Enabling and disabling merge joins
	Enabling and disabling join transitive closure
	Suggesting a degree of parallelism for a query
	Table 18-2: Optimizer hints for serial and parallel execution
	Query level parallel clause examples

	Concurrency optimization for small tables
	Changing locking scheme
	Table 18-3: Effects of alter table on concurrency optimization settings

	CHAPTER 19 Query Tuning Tools
	Overview
	How tools may interact
	Using showplan and noexec together
	noexec and statistics io

	How tools relate to query processing

	CHAPTER 20 Access Methods and Query Costing for Single Tables
	Table scan cost
	Cost of a scan on allpages-locked table
	Cost of a scan on a data-only-locked tables
	Figure 20-1: Sequence of pointers for OAM scans

	From rows to pages
	How cluster ratios affect large I/O estimates
	Data page cluster ratio
	On allpages-locked tables
	Figure 20-2: Page chain crossing extents in an allpages-locked table

	On data-only-locked tables

	Index page cluster ratio

	Evaluating the cost of index access
	Query that returns a single row
	Query that returns many rows
	Range queries using clustered indexes (allpages locking)
	Figure 20-3: Range query on the clustered index of an allpages�locked table

	Range queries with covering indexes
	Range queries with noncovering indexes
	Result-set size and index use
	Closer look at the Search Argument costing

	Costing for noncovering index scans
	Costing for forwarded rows

	Costing for queries using order by
	Prefix subset and sorts
	Key ordering and sorts
	Specifying ascending or descending order for index keys
	Figure 20-4: Forward and backward scans on an index

	How the optimizer costs sort operations
	Allpages-locked tables with clustered indexes
	Figure 20-5: An order by query using a clustered index, allpages locking
	Figure 20-6: An order by desc query using a clustered index

	Sorts when index covers the query
	Sorts and noncovering indexes
	Backward scans and joins
	Deadlocks and descending scans

	Access Methods and Costing for or and in Clauses
	or syntax
	in (values_list) converts to or processing
	Methods for processing or clauses
	When table scans are used for or queries
	Dynamic index (OR strategy)
	Figure 20-7: Resolving or queries using the OR strategy

	Multiple matching index scans (special OR strategy)

	How aggregates are optimized
	Table 20-1: Special access methods for aggregates
	Combining max and min aggregates
	Queries that use both min and max

	How update operations are performed
	Direct updates
	In-place updates
	Cheap direct updates
	Expensive direct updates

	Deferred updates
	When deferred updates are required

	Deferred index inserts
	Figure 20-8: Deferred index update

	Restrictions on update modes through joins
	Joins and subqueries in update and delete statements
	Deletes and updates in triggers versus referential integrity

	Optimizing updates
	Designing for direct updates
	Effects of update types and indexes on update modes
	Table 20-2: Effects of indexing on update mode

	Using sp_sysmon while tuning updates

	CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries
	Costing and optimizing joins
	Processing
	Index density and joins
	Multicolumn densities

	Datatype mismatches and joins
	Join permutations
	Table 21-1: Tables considered at a time during a join
	Outer joins and join permutations

	Nested-loop joins
	Figure 21-1: Nesting of tables during a nested-loop join
	Cost formula
	How inner and outer tables are determined

	Access methods and costing for sort-merge joins
	Figure 21-2: Merge join types
	How a full-merge is performed
	Figure 21-3: A serial merge scan on two tables with clustered indexes
	Figure 21-4: Full merge scan using a nonclustered index on the inner table

	How a right-merge or left-merge is performed
	How a sort-merge is performed
	Mixed example
	Figure 21-5: Multiple steps in processing a merge join
	showplan messages for sort-merge joins

	Costing for merge joins
	Costing for a full-merge with unique values
	Example: allpages-locked tables with clustered indexes
	Costing for a full-merge with duplicate values
	Costing sorts
	Worktable size for sort-merge joins

	When merge joins cannot be used
	Use of worker processes
	Recommendations for improved merge performance

	Enabling and disabling merge joins
	At the server level
	At the session level

	Reformatting strategy
	Subquery optimization
	Flattening in, any, and exists subqueries
	When flattening can be done
	Exceptions to flattening
	Flattening methods
	Join order and flattening methods
	Flattened subqueries executed as regular joins
	Flattened subqueries executed as existence joins
	Flattened subqueries executed using unique reformatting
	Flattened subqueries using duplicate elimination

	Flattening expression subqueries
	Materializing subquery results
	Noncorrelated expression subqueries
	Quantified predicate subqueries containing aggregates

	Subquery introduced with an and clause
	Subquery introduced with an or clause
	Subquery results caching
	Displaying subquery cache information

	Optimizing subqueries

	or Clauses versus unions in joins

	CHAPTER 22 Parallel Query Processing
	Types of queries that can benefit from parallel processing
	Adaptive Server’s worker process model
	Figure 22-1: Worker process model
	Parallel query execution
	Figure 22-2: Relative execution times for serial and parallel query execution

	Returning results from parallel queries

	Types of parallel data access
	Figure 22-3: A serial task scans data pages
	Hash-based table scans
	Figure 22-4: Worker processes scan an unpartitioned table

	Partition-based scans
	Figure 22-5: Multiple worker processes access multiple partitions

	Hash-based index scans
	Figure 22-6: Hash-based, nonclustered index scan

	Parallel processing for two tables in a join
	Figure 22-7: Join query using different parallel access methods on each table

	showplan messages

	Controlling the degree of parallelism
	Configuration parameters for controlling parallelism
	Table 22-1: Configuration parameters for parallel execution
	How limits apply to query plans
	How the limits work in combination
	Examples of setting parallel configuration parameters

	Using set options to control parallelism for a session
	Table 22-2: set options for parallel execution tuning
	set command examples

	Controlling parallelism for a query
	Query level parallel clause examples

	Worker process availability and query execution
	Other configuration parameters for parallel processing

	Commands for working with partitioned tables
	Figure 22-8: Steps for creating and loading a new partitioned table

	Balancing resources and performance
	CPU resources
	Disk resources and I/O
	Tuning example: CPU and I/O saturation
	Table 22-3: Scaling of engines and worker processes

	Guidelines for parallel query configuration
	Hardware guidelines
	Working with your performance goals and hardware guidelines
	Examples of parallel query tuning
	Improving the performance of a table scan
	Improving the performance of a nonclustered index scan

	Guidelines for partitioning and parallel degree
	Experimenting with data subsets

	System level impacts
	Locking issues
	Device issues
	Procedure cache effects

	When parallel query results can differ
	Queries that use set rowcount
	Queries that set local variables
	Achieving consistent results

	CHAPTER 23 Parallel Query Optimization
	What is parallel query optimization?
	Optimizing for response time versus total work

	When is optimization performed?
	Overhead costs
	Factors that are not considered

	Parallel access methods
	Parallel partition scan
	Figure 23-1: Parallel partition scan
	Requirements for consideration
	Cost model

	Parallel clustered index partition scan (allpages-locked tables)
	Figure 23-2: Parallel clustered index partition scan
	Requirements for consideration
	Cost model

	Parallel hash-based table scan
	Hash-based table scans on allpages-locked tables
	Figure 23-3: Parallel hash-based table scan on an allpages-locked table

	Hash-based table scans on data-only-locked tables
	Requirements for consideration
	Cost model

	Parallel hash-based index scan
	Figure 23-4: Nonclustered index hash-based scan
	Cost model and requirements

	Parallel range-based scans
	Requirements for consideration
	Figure 23-5: A parallel right-merge join

	Additional parallel strategies
	Partitioned worktables
	Parallel sorting

	Summary of parallel access methods
	Table 23-1: Parallel access method summary
	Selecting parallel access methods
	Table 23-2: Determining applicable partition or hash-based access methods

	Degree of parallelism for parallel queries
	Upper limit
	Optimized degree
	Worker processes for partition-based scans
	Worker processes for hash-based scans
	Worker processes for range-based scans
	Usage while creating the worktable
	Parallel sorting for merge-join worktables
	Number of merge threads
	Total usage for merge joins

	Nested-loop joins
	Figure 23-6: Worker process usage for a nested-loop join
	Alternative plans
	Computing the degree of parallelism for nested-loop joins
	Parallel queries and existence joins

	Examples
	Partitioned heap table
	Single-table query
	Query with a join

	Nonpartitioned heap table
	Table with clustered index

	Runtime adjustments to worker processes

	Parallel query examples
	Single-table scans
	Table partition scan

	Multitable joins
	Parallel join optimization and join orders
	Scenario A: clustered index on publishers
	Scenario B: clustered index on titles
	Scenario C: neither table has a useful index

	Subqueries
	Queries that require worktables
	union queries
	Queries with aggregates
	select into statements

	Runtime adjustment of worker processes
	How Adaptive Server adjusts a query plan
	Evaluating the effect of runtime adjustments
	Recognizing and managing runtime adjustments
	Using set process_limit_action
	Using showplan

	Reducing the likelihood of runtime adjustments
	Checking runtime adjustments with sp_sysmon

	Diagnosing parallel performance problems
	Query does not run in parallel
	Parallel performance is not as good as expected
	Calling technical support for diagnosis

	Resource limits for parallel queries

	CHAPTER 24 Parallel Sorting
	Commands that benefits from parallel sorting
	Requirements and resources overview
	Overview of the parallel sorting strategy
	Figure 24-1: Parallel sort strategy
	Creating a distribution map
	Dynamic range partitioning
	Range sorting
	Merging results

	Configuring resources for parallel sorting
	Worker process requirements for parallel sorts
	Worker process requirements for creating indexes
	Table 24-1: Number of producers and consumers used for create index
	Clustered indexes on partitioned tables
	Clustered indexes on unpartitioned tables
	Nonclustered indexes

	Using with consumers while creating indexes

	Worker process requirements for select query sorts
	Worker processes for merge-join sorts
	Other worktable sorts

	Caches, sort buffers, and parallel sorts
	Cache bindings
	Number of sort buffers can affect sort performance
	Sort buffer configuration guidelines
	Using less than the configured number of sort buffers
	Configuring the number of sort buffers parameter
	Figure 24-2: Area available for sort buffers
	Computing the allowed sort buffer value for a pool

	Procedure for estimating merge levels and I/O
	Configuring caches for large I/O during parallel sorting
	Balancing sort buffers and large I/O configuration

	Disk requirements
	Space requirements for creating indexes
	Space requirements for worktable sorts
	Number of devices in the target segment

	Recovery considerations
	Tools for observing and tuning sort behavior
	Using set sort_resources on
	Table 24-2: Basic sort resource messages
	Examples
	Nonclustered index on a nonpartitioned table
	Nonclustered index on a partitioned table
	Clustered index on partitioned table executed in parallel
	Sort failure

	Using sp_sysmon to tune index creation

	CHAPTER 25 Tuning Asynchronous Prefetch
	How asynchronous prefetch improves performance
	Improving query performance by prefetching pages
	Prefetching control mechanisms in a multiuser environment
	Look-ahead set during recovery
	Prefetching log pages
	Prefetching data and index pages

	Look-ahead set during sequential scans
	Look-ahead set during nonclustered index access
	Look-ahead set during dbcc checks
	Allocation checking
	checkdb and checktable

	Look-ahead set minimum and maximum sizes
	Table 25-1: Look-ahead set sizes

	When prefetch is automatically disabled
	Flooding pools
	I/O system overloads
	Unnecessary reads
	Page chain fragmentation
	Figure 25-1: A kink in a page chain crossing allocation units

	Tuning Goals for Asynchronous Prefetch
	Commands for configuration

	Other Adaptive Server performance features
	Large I/O
	Sizing and limits for the 16k pool
	Limits for the 2K pool

	Fetch-and-discard (MRU) scans
	Parallel scans and large I/Os
	Hash-based table scans
	Partition-based scans

	Special settings for asynchronous prefetch limits
	Setting limits for recovery
	Setting limits for dbcc

	Maintenance activities for high prefetch performance
	Eliminating kinks in heap tables
	Eliminating kinks in clustered index tables
	Eliminating kinks in nonclustered indexes

	Performance monitoring and asynchronous prefetch

	CHAPTER 26 tempdb Performance Issues
	How management of tempdb affects performance
	Main solution areas for tempdb performance

	Types and uses of temporary tables
	Truly temporary tables
	Regular user tables
	Worktables

	Initial allocation of tempdb
	Figure 26-1: tempdb default allocation

	Sizing the tempdb
	Placing tempdb
	Dropping the master Device from tempdb segments
	Using multiple disks for parallel query performance
	Figure 26-2: tempdb spanning disks

	Binding tempdb to its own cache
	Commands for cache binding

	Temporary tables and locking
	Minimizing logging in tempdb
	With select into
	By using shorter rows

	Optimizing temporary tables
	Figure 26-3: Optimizing and creating temporary tables
	Creating indexes on temporary tables
	Creating nested procedures with temporary tables
	Breaking tempdb uses into multiple procedures

	CHAPTER 27 Cursors and Performance
	Definition
	Figure 27-1: Cursor example
	Set-oriented versus row-oriented programming
	Figure 27-2: Cursor flowchart

	Example

	Resources required at each stage
	Figure 27-3: Resource use by cursor statement
	Table 27-1: Locks and memory use for isql and Client-Library client cursors
	Memory use and execute cursors

	Cursor modes
	Index use and requirements for cursors
	Allpages-locked tables
	Data-only-locked tables
	Table scans to avoid the Halloween problem

	Comparing performance with and without cursors
	Sample stored procedure without a cursor
	Sample stored procedure with a cursor
	Cursor versus noncursor performance comparison
	Table 27-2: Sample execution times against a 5000-row table

	Locking with read-only cursors
	Figure 27-4: Read-only cursors and locking experiment input
	Table 27-3: Locks held on data and index pages by cursors

	Isolation levels and cursors
	Partitioned heap tables and cursors
	Optimizing tips for cursors
	Optimizing for cursor selects using a cursor
	Using union instead of or clauses or in lists
	Declaring the cursor’s intent
	Specifying column names in the for update clause
	Table 27-4: Effects of for update clause and shared on cursor locking

	Using set cursor rows
	Keeping cursors open across commits and rollbacks
	Opening multiple cursors on a single connection

	CHAPTER 28 Introduction to Abstract Plans
	Definition
	Managing abstract plans
	Relationship between query text and query plans
	Limits of options for influencing query plans

	Full versus partial plans
	Creating a partial plan

	Abstract plan groups
	How abstract plans are associated with queries

	CHAPTER 29 Abstract Query Plan Guide
	Introduction
	Abstract plan language
	Queries, access methods, and abstract plans

	Identifying tables
	Identifying indexes
	Specifying join order
	Shorthand notation for joins
	Join order examples
	Match between execution methods and abstract plans
	Specifying join order for queries using views

	Specifying the join type
	Specifying partial plans and hints
	Grouping multiple hints
	Inconsistent and illegal plans using hints

	Creating abstract plans for subqueries
	Materialized subqueries
	Flattened subqueries
	Example: changing the join order in a flattened subquery
	Nested subqueries
	Subquery identification and attachment
	More subquery examples: reading ordering and attachment
	Modifying subquery nesting

	Abstract plans for materialized views
	Abstract plans for queries containing aggregates
	Specifying the reformatting strategy
	OR strategy limitation
	When the store operator is not specified

	Tips on writing abstract plans
	Comparing plans “before” and “after”
	Effects of enabling server-wide capture mode
	Time and space to copy plans

	Abstract plans for stored procedures
	Procedures and plan ownership
	Procedures with variable execution paths and optimization

	Ad Hoc queries and abstract plans

	CHAPTER 30 Creating and Using Abstract Plans
	Using set commands to capture and associate plans
	Enabling plan capture mode with set plan dump
	Associating queries with stored plans
	Using replace mode during plan capture
	When to use replace mode

	Using dump, load, and replace modes simultaneously
	Using dump and load to the same group
	Using dump and load to different groups

	set plan exists check option
	Using Other set options with abstract plans
	Using showplan
	Using noexec
	Using forceplan

	Server-wide abstract plan capture and association Modes
	Creating plans using SQL
	Using create plan
	Using the plan Clause

	CHAPTER 31 Managing Abstract Plans with System Procedures
	System procedures for managing abstract plans
	Managing an abstract plan group
	Creating a group
	Dropping a group
	Getting information about a group
	Renaming a group

	Finding abstract plans
	Managing individual abstract plans
	Viewing a plan
	Copying a plan to another group
	Dropping an individual abstract plan
	Comparing two abstract plans
	Table 31-1: Return status values for sp_cmp_qplans

	Changing an existing plan

	Managing all plans in a group
	Copying all plans in a group
	Comparing all plans in a group
	Table 31-2: Report modes for sp_cmp_all_qplans

	Dropping all abstract plans in a group

	Importing and exporting groups of plans
	Exporting plans to a user table
	Importing plans from a user table

	CHAPTER 32 Abstract Plan Language Reference
	Keywords
	Operands
	Table 32-1: Identifiers used
	Derived tables

	Schema for examples
	g_join
	hints
	i_scan
	in
	lru
	m_g_join
	mru
	nested
	nl_g_join
	parallel
	plan
	prefetch
	prop
	scan
	store
	subq
	t_scan
	table
	union
	view
	work_t

