
Performance and Tuning Guide:
Volume 2 - Optimizing and Abstract

Plans

Adaptive Server Enterprise

12.5



DOCUMENT ID: 33620-01-1250-02

LAST REVISED: May 2001

Copyright © 1989-2001 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new 
editions or technical notes. Information in this document is  subject to change without notice. The software described herein is furnished 
under  a license agreement, and it may be used or copied only in accordance with the  terms of that agreement.

To order additional documents, U.S. and Canadian customers should call  Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer  Fulfillment via the above fax number. All other 
international customers should  contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled 
software release dates. No part of this publication may be reproduced, transmitted, or translated in any  form or by any means, electronic, 
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, 
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, 
Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, 
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server, 
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, 
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution 
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Server, Enterprise Application Studio, Enterprise 
Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work 
Architecture, Enterprise Work Designer, Enterprise Work Modeler, EWA, Gateway Manager, ImpactNow, InfoMaker, Information 
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, 
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport, 
Net-Gateway, Net-Library, NetImpact, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, 
Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open 
ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC, 
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, 
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare 
Desktop, PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver, 
Replication Server, Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-
Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL 
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL 
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL 
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial 
Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, 
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, 
Transact-SQL, Translation Toolkit, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual 
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse 
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup 
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 1/01

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or  registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set  forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth  in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.



Contents

iii

About This Book .........................................................................................................................  xiii

CHAPTER 17 Adaptive Server Optimizer .........................................................  375
Definition ......................................................................................  375

Steps in query processing .....................................................  376
Working with the optimizer ....................................................  376

Object sizes are important to query tuning...................................  377
Query optimization .......................................................................  378
Factors examined during optimization..........................................  379
Preprocessing can add clauses for optimizing.............................  380

Converting clauses to search argument equivalents.............  380
Converting expressions into search arguments ....................  381
Search argument transitive closure.......................................  381
Join transitive closure............................................................  382
Predicate transformation and factoring .................................  383

Guidelines for creating search arguments....................................  385
Search arguments and useful indexes.........................................  386

Search argument syntax .......................................................  386
How statistics are used for SARGS.......................................  388
Using statistics on multiple search arguments ......................  390
Default values for search arguments.....................................  391
SARGs using variables and parameters ...............................  392

Join syntax and join processing ...................................................  392
How joins are processed .......................................................  393
When statistics are not available for joins .............................  393
Density values and joins........................................................  394
Multiple column joins .............................................................  394
Search arguments and joins on a table.................................  394

Datatype mismatches and query optimization..............................  395
Overview of the datatype hierarchy and index issues ...........  396
Datatypes for parameters and variables used as SARGs.....  399
Compatible datatypes for join columns .................................  400
Suggestions on datatypes and comparisons.........................  401
Forcing a conversion to the other side of a join.....................  402



Contents

iv

Splitting stored procedures to improve costing ............................  403
Basic units of costing ...................................................................  404

CHAPTER 18 Advanced Optimizing Tools ....................................................... 405
Special optimizing techniques......................................................  405
Specifying optimizer choices........................................................  406
Specifying table order in joins ......................................................  407

Risks of using forceplan ........................................................  408
Things to try before using forceplan ......................................  408

Specifying the number of tables considered by the optimizer......  409
Specifying an index for a query....................................................  410

Risks......................................................................................  411
Things to try before specifying an index................................  411

Specifying I/O size in a query.......................................................  412
Index type and large I/O ........................................................  413
When prefetch specification is not followed ..........................  414
set prefetch on.......................................................................  414

Specifying the cache strategy ......................................................  415
In select, delete, and update statements...............................  416

Controlling large I/O and cache strategies ...................................  416
Getting information on cache strategies................................  417

Enabling and disabling merge joins .............................................  417
Enabling and disabling join transitive closure ..............................  418
Suggesting a degree of parallelism for a query............................  419

Query level parallel clause examples....................................  420
Concurrency optimization for small tables ...................................  421

Changing locking scheme .....................................................  421

CHAPTER 19  Query Tuning Tools.................................................................... 423
Overview ......................................................................................  423
How tools may interact .................................................................  425

Using showplan and noexec together ...................................  425
noexec and statistics io .........................................................  425

How tools relate to query processing ...........................................  426

CHAPTER 20 Access Methods and Query Costing for Single Tables ........... 427
Table scan cost ............................................................................  429

Cost of a scan on allpages-locked table................................  429
Cost of a scan on a data-only-locked tables .........................  430

From rows to pages .....................................................................  432
How cluster ratios affect large I/O estimates.........................  433

Evaluating the cost of index access .............................................  435



Contents

v

Query that returns a single row .............................................  435
Query that returns many rows ...............................................  435
Range queries with covering indexes....................................  438
Range queries with noncovering indexes..............................  439

Costing for queries using order by ...............................................  443
Prefix subset and sorts..........................................................  444
Key ordering and sorts ..........................................................  445
How the optimizer costs sort operations ...............................  447
Allpages-locked tables with clustered indexes ......................  447
Sorts when index covers the query .......................................  449
Sorts and noncovering indexes .............................................  450

Access Methods and Costing for or and in Clauses ....................  451
or syntax................................................................................  451
in (values_list) converts to or processing ..............................  451
Methods for processing or clauses........................................  452

How aggregates are optimized ....................................................  456
Combining max and min aggregates.....................................  457

How update operations are performed.........................................  458
Direct updates .......................................................................  458
Deferred updates...................................................................  461
Deferred index inserts ...........................................................  462
Restrictions on update modes through joins .........................  465
Optimizing updates................................................................  466
Using sp_sysmon while tuning updates ................................  468

CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries ..  471
Costing and optimizing joins ........................................................  471

Processing.............................................................................  472
Index density and joins..........................................................  472
Datatype mismatches and joins ............................................  473
Join permutations ..................................................................  473

Nested-loop joins .........................................................................  476
Cost formula ..........................................................................  478
How inner and outer tables are determined ..........................  478

Access methods and costing for sort-merge joins .......................  479
How a full-merge is performed ..............................................  481
How a right-merge or left-merge is performed ......................  482
How a sort-merge is performed.............................................  483
Mixed example ......................................................................  483
Costing for merge joins .........................................................  485
Costing for a full-merge with unique values ..........................  486
Example: allpages-locked tables with clustered indexes ......  486
Costing for a full-merge with duplicate values.......................  487
Costing sorts .........................................................................  488



Contents

vi

When merge joins cannot be used........................................  489
Use of worker processes.......................................................  490
Recommendations for improved merge performance ...........  490

Enabling and disabling merge joins .............................................  491
At the server level..................................................................  492
At the session level ...............................................................  492

Reformatting strategy...................................................................  492
Subquery optimization..................................................................  493

Flattening in, any, and exists subqueries ..............................  494
Flattening expression subqueries..........................................  499
Materializing subquery results...............................................  499
Subquery introduced with an and clause ..............................  501
Subquery introduced with an or clause .................................  502
Subquery results caching ......................................................  502
Optimizing subqueries...........................................................  503

or Clauses versus unions in joins.................................................  504

CHAPTER 22 Parallel Query Processing .......................................................... 505
Types of queries that can benefit from parallel processing..........  506
Adaptive Server’s worker process model.....................................  507

Parallel query execution ........................................................  509
Returning results from parallel queries..................................  510

Types of parallel data access.......................................................  511
Hash-based table scans........................................................  512
Partition-based scans............................................................  513
Hash-based index scans .......................................................  513
Parallel processing for two tables in a join ............................  514
showplan messages..............................................................  515

Controlling the degree of parallelism............................................  516
Configuration parameters for controlling parallelism .............  517
Using set options to control parallelism for a session ...........  519
Controlling parallelism for a query.........................................  520
Worker process availability and query execution ..................  521
Other configuration parameters for parallel processing ........  522

Commands for working with partitioned tables ............................  522
Balancing resources and performance ........................................  525

CPU resources ......................................................................  525
Disk resources and I/O..........................................................  526
Tuning example: CPU and I/O saturation..............................  526

Guidelines for parallel query configuration...................................  526
Hardware guidelines..............................................................  527
Working with your performance goals and hardware guidelines..  

527
Examples of parallel query tuning .........................................  528



Contents

vii

Guidelines for partitioning and parallel degree......................  529
Experimenting with data subsets...........................................  530

System level impacts ...................................................................  531
Locking issues.......................................................................  531
Device issues ........................................................................  532
Procedure cache effects........................................................  532

When parallel query results can differ..........................................  533
Queries that use set rowcount...............................................  533
Queries that set local variables .............................................  534
Achieving consistent results ..................................................  534

CHAPTER 23 Parallel Query Optimization .......................................................  535
What is parallel query optimization? ............................................  536

Optimizing for response time versus total work.....................  536
When is optimization performed?.................................................  536
Overhead costs ............................................................................  537

Factors that are not considered.............................................  537
Parallel access methods ..............................................................  538

Parallel partition scan ............................................................  539
Parallel clustered index partition scan (allpages-locked tables) 540
Parallel hash-based table scan .............................................  542
Parallel hash-based index scan ............................................  544
Parallel range-based scans...................................................  546
Additional parallel strategies .................................................  548

Summary of parallel access methods ..........................................  548
Selecting parallel access methods ........................................  549

Degree of parallelism for parallel queries.....................................  550
Upper limit .............................................................................  551
Optimized degree ..................................................................  551
Nested-loop joins...................................................................  554
Examples...............................................................................  557
Runtime adjustments to worker processes ...........................  559

Parallel query examples...............................................................  559
Single-table scans .................................................................  560
Multitable joins.......................................................................  562
Subqueries ............................................................................  565
Queries that require worktables ............................................  565
union queries.........................................................................  566
Queries with aggregates .......................................................  566
select into statements............................................................  566

Runtime adjustment of worker processes ....................................  567
How Adaptive Server adjusts a query plan ...........................  568
Evaluating the effect of runtime adjustments ........................  568
Recognizing and managing runtime adjustments .................  569



Contents

viii

Reducing the likelihood of runtime adjustments....................  570
Checking runtime adjustments with sp_sysmon ...................  570

Diagnosing parallel performance problems..................................  571
Query does not run in parallel ...............................................  571
Parallel performance is not as good as expected .................  572
Calling technical support for diagnosis..................................  572

Resource limits for parallel queries ..............................................  573

CHAPTER 24 Parallel Sorting ............................................................................ 575
Commands that benefits from parallel sorting..............................  575
Requirements and resources overview........................................  576
Overview of the parallel sorting strategy ......................................  577

Creating a distribution map ...................................................  579
Dynamic range partitioning....................................................  579
Range sorting ........................................................................  580
Merging results......................................................................  580

Configuring resources for parallel sorting ....................................  580
Worker process requirements for parallel sorts.....................  581
Worker process requirements for select query sorts.............  584
Caches, sort buffers, and parallel sorts.................................  585
Disk requirements .................................................................  592

Recovery considerations..............................................................  594
Tools for observing and tuning sort behavior ...............................  594

Using set sort_resources on..................................................  595
Using sp_sysmon to tune index creation .....................................  599

CHAPTER 25 Tuning Asynchronous Prefetch ................................................. 601
How asynchronous prefetch improves performance....................  601

Improving query performance by prefetching pages .............  602
Prefetching control mechanisms in a multiuser environment  603
Look-ahead set during recovery............................................  604
Look-ahead set during sequential scans...............................  604
Look-ahead set during nonclustered index access ...............  605
Look-ahead set during dbcc checks......................................  605
Look-ahead set minimum and maximum sizes .....................  606

When prefetch is automatically disabled......................................  607
Flooding pools .......................................................................  608
I/O system overloads.............................................................  608
Unnecessary reads ...............................................................  609

Tuning Goals for Asynchronous Prefetch ....................................  611
Commands for configuration .................................................  612

Other Adaptive Server performance features ..............................  612
Large I/O ...............................................................................  612



Contents

ix

Fetch-and-discard (MRU) scans ...........................................  614
Parallel scans and large I/Os ................................................  614

Special settings for asynchronous prefetch limits ........................  615
Setting limits for recovery ......................................................  615
Setting limits for dbcc ............................................................  616

Maintenance activities for high prefetch performance..................  616
Eliminating kinks in heap tables ............................................  617
Eliminating kinks in clustered index tables ............................  617
Eliminating kinks in nonclustered indexes.............................  617

Performance monitoring and asynchronous prefetch ..................  617

CHAPTER 26 tempdb Performance Issues......................................................  619
How management of tempdb affects performance ......................  619

Main solution areas for tempdb performance........................  620
Types and uses of temporary tables ............................................  620

Truly temporary tables...........................................................  621
Regular user tables ...............................................................  621
Worktables ............................................................................  622

Initial allocation of tempdb............................................................  622
Sizing the tempdb ........................................................................  623
Placing tempdb ............................................................................  624
Dropping the master Device from tempdb segments...................  624

Using multiple disks for parallel query performance..............  625
Binding tempdb to its own cache .................................................  625

Commands for cache binding................................................  626
Temporary tables and locking ......................................................  626
Minimizing logging in tempdb.......................................................  627

 With select into .....................................................................  627
By using shorter rows............................................................  627

Optimizing temporary tables ........................................................  628
Creating indexes on temporary tables...................................  629
Creating nested procedures with temporary tables...............  629
Breaking tempdb uses into multiple procedures ...................  630

CHAPTER 27 Cursors and Performance..........................................................  631
Definition ......................................................................................  631

Set-oriented versus row-oriented programming ....................  632
Example ................................................................................  633

Resources required at each stage ...............................................  634
Memory use and execute cursors .........................................  636

Cursor modes...............................................................................  637
Index use and requirements for cursors.......................................  637

Allpages-locked tables ..........................................................  637



Contents

x

Data-only-locked tables.........................................................  638
Comparing performance with and without cursors.......................  639

Sample stored procedure without a cursor............................  639
Sample stored procedure with a cursor.................................  640
Cursor versus noncursor performance comparison ..............  641

Locking with read-only cursors.....................................................  642
Isolation levels and cursors..........................................................  644
Partitioned heap tables and cursors.............................................  644
Optimizing tips for cursors............................................................  645

Optimizing for cursor selects using a cursor .........................  645
Using union instead of or clauses or in lists ..........................  646
Declaring the cursor’s intent..................................................  646
Specifying column names in the for update clause ...............  646
Using set cursor rows............................................................  647
Keeping cursors open across commits and rollbacks ...........  648
Opening multiple cursors on a single connection..................  648

CHAPTER 28 Introduction to Abstract Plans ................................................... 649
Definition ......................................................................................  649
Managing abstract plans ..............................................................  650
Relationship between query text and query plans .......................  650

Limits of options for influencing query plans .........................  651
Full versus partial plans ...............................................................  651

Creating a partial plan ...........................................................  653
Abstract plan groups ....................................................................  653
How abstract plans are associated with queries ..........................  654

CHAPTER 29 Abstract Query Plan Guide ......................................................... 655
Introduction ..................................................................................  655

Abstract plan language..........................................................  656
Identifying tables ...................................................................  658
Identifying indexes.................................................................  659
Specifying join order..............................................................  659
Specifying the join type .........................................................  663
Specifying partial plans and hints..........................................  664
Creating abstract plans for subqueries..................................  666
Abstract plans for materialized views ....................................  673
Abstract plans for queries containing aggregates .................  673
Specifying the reformatting strategy......................................  676
OR strategy limitation ............................................................  676
When the store operator is not specified...............................  676

Tips on writing abstract plans.......................................................  677
Comparing plans “before” and “after” ...........................................  678



Contents

xi

Effects of enabling server-wide capture mode ......................  678
Time and space to copy plans...............................................  679

Abstract plans for stored procedures ...........................................  680
Procedures and plan ownership............................................  680
Procedures with variable execution paths and optimization..  681

Ad Hoc queries and abstract plans ..............................................  681

CHAPTER 30 Creating and Using Abstract Plans...........................................  683
Using set commands to capture and associate plans..................  683

Enabling plan capture mode with set plan dump...................  684
Associating queries with stored plans ...................................  684
Using replace mode during plan capture...............................  685
Using dump, load, and replace modes simultaneously .........  686

set plan exists check option .........................................................  688
Using Other set options with abstract plans.................................  688

Using showplan .....................................................................  689
Using noexec.........................................................................  689
Using forceplan .....................................................................  689

Server-wide abstract plan capture and association Modes..........  690
Creating plans using SQL ............................................................  690

Using create plan ..................................................................  691
Using the plan Clause ...........................................................  692

CHAPTER 31 Managing Abstract Plans with System Procedures ................  695
System procedures for managing abstract plans.........................  695
Managing an abstract plan group.................................................  696

Creating a group....................................................................  696
Dropping a group...................................................................  697
Getting information about a group.........................................  697
Renaming a group.................................................................  700

Finding abstract plans ..................................................................  700
Managing individual abstract plans ..............................................  701

Viewing a plan .......................................................................  701
Copying a plan to another group ...........................................  702
Dropping an individual abstract plan .....................................  702
Comparing two abstract plans...............................................  703
Changing an existing plan .....................................................  704

Managing all plans in a group ......................................................  704
Copying all plans in a group ..................................................  704
Comparing all plans in a group..............................................  705
Dropping all abstract plans in a group...................................  707

Importing and exporting groups of plans......................................  708
Exporting plans to a user table..............................................  708



Contents

xii

Importing plans from a user table..........................................  709

CHAPTER 32 Abstract Plan Language Reference ........................................... 711
Keywords .....................................................................................  711
Operands .....................................................................................  711

Derived tables .......................................................................  712
Schema for examples ..................................................................  712
g_join............................................................................................  713
hints..............................................................................................  715
i_scan...........................................................................................  716
in ..................................................................................................  718
lru .................................................................................................  720
m_g_join.......................................................................................  721
mru ...............................................................................................  723
nested ..........................................................................................  723
nl_g_join.......................................................................................  725
parallel..........................................................................................  726
plan ..............................................................................................  727
prefetch ........................................................................................  729
prop ..............................................................................................  730
scan..............................................................................................  731
store .............................................................................................  732
subq .............................................................................................  734
t_scan...........................................................................................  737
table .............................................................................................  737
union ............................................................................................  739
view ..............................................................................................  740
work_t...........................................................................................  741



xiii

About This Book

Audience This manual is intened for database administrators, database designers, 
developers and system administrators.

Note  You may want to use your own database for testing changes and 
queries. Take a snapshot of the database in question and set it up on a test 
machine.

How to use this book This manual would normally be used to fine tune, troubleshoot or improve 
the performance on Adaptive Server. The Performance and Tuning Guide  
is divided into three books:

• Volume 1 - Basics

• Volume 2 - Optimizing and Abstract Plans

• Volume 3 - Tools for Monitoring and Analyzing Performance

The following information is covered:

Volume 1- Basics

Chapter 1, “Overview” describes the major components to be analyzed 
when addressing performance.

Chapter 2, “Networks and Performance” provides a brief description of 
relational databases and good database design.

Chapter 3, “Using Engines and CPUs”describes Adaptive Server page 
types, how data is stored on pages and how queries on heap tables are 
executed.

Chapter 4, “Distributing Engine Resources” provides information on how 
indexes are used to resolve queries.

Chapter 5, “Controlling Physical Data Placement” explains the process 
for query optimization, how statistics are applied to search arguments and 
joins for queries.

Chapter 6, “Database Design” describes how Adaptive Server accesses 
tables in queries that only involve a single table, and how the costs are 
estimated for various access methods



 

xiv  

Chapter 7, “Data Storage” describes how Adaptive Server accesses tables 
during joins and subqueries and how the costs are determined

Chapter 8, “Indexing for Performance” describes performance issues with 
cursors.

Chapter 9, “How Indexes Work” provides guidelines and examples for 
choosing indexes.

Chapter 10, “Locking Configuration and Tuning” provides an in-depth look at 
the optimization of parallel queries

Chapter 11, “Using Locking Commands” introduces the concepts and 
resources required for parallel query processing

Chapter 12, “Reporting on Locks” describes the use of parallel sorting for 
queries and for creating indexes.

Chapter 13, “Setting Space Management Properties” presents an overview of 
query tuning tools and describes how these tools can interact

Chapter 14, “Memory Use and Performance” describes different methods for 
determining the current size of database objects and for estimating their future 
size.

Chapter 15, “Determining Sizes of Tables and Indexes,” describes different 
methods for determining the current size of database objects and for estimating 
their future size.

Chapter 16, “Maintenance Activities and Performance” explains the 
commands that provide information about query execution.

Volume 2 - Optimizing and Abstract Plans

Chapter 17, “Adaptive Server Optimizer” explains the process of query 
optimization, how statistics are applied to search arguments and joins for 
queries.

Chapter 18, “Advanced Optimizing Tools” describes advanced tools for tuning 
query performance

Chapter 19, “Query Tuning Tools” presents an overview of query tuning tools 
and describes how these tools can interact.

Chapter 20, “Access Methods and Query Costing for Single Tables” describes 
how Adaptive Server accesses tables in queries that only involve one table and 
how the costs are estimated for various access methods.



     About This Book

xv

Chapter 21, “Accessing Methods and Costing for Joins and Subqueries” 
describes how Adaptive Server accesses tables during joins and subqueries, 
and how the costs are determined.

Chapter 22, “Parallel Query Processing” intoduces the concepts and resources 
required for parallel query processing.

Chapter 23, “Parallel Query Optimization” provides an indepth look at the 
optimization of parallel queries.

Chapter 24, “Parallel Sorting” describes the use of parallel sorting for queries 
and creating indexes.

Chapter 25, “Tuning Asynchronous Prefetch” describes how asynchronous 
prefetch improves performance for queries that perform large disk I/O.

Chapter 26, “tempdb Performance Issues” stresses the importance of the 
temporary database , tempdb, and provides suggestions for improving its 
performance.

Chapter 27, “Cursors and Performance” describes performance issues with 
cursors.

Chapter 28, “Introduction to Abstract Plans” provides an overview of abstravt 
plans and how they can be used to solve query optimization problems.

Chapter 29, “Abstract Query Plan Guide” provides an introduction to writing 
abstract plans for specific types of queries and to using abstract plans to detect 
changes in query optimization due to configuration or system changes.

Chapter 30, “Creating and Using Abstract Plans” describes the commands that 
can be used to save and use abstract plans.

Chapter 31, “Managing Abstract Plans with System Procedures” describes the 
system procedures that manage abstract plans and abstract plan groups.

Chapter 32, “Abstract Plan Language Reference” describes the abstract plan 
language.

Volume 3 - Tools for Monitoring and Analyzing Performance

Chapter 33, “Using Statistics to Improve Performance” describes how to use 
the update statistics command to create and update statistics.

Chapter 34, “Using the set statistics Commands” explains the commands that 
provide information about execution.

Chapter 35, “Using set showplan” provides examples of showplan messages.



 

xvi  

Chapter 36, “Statistics Tables and Displaying Statistics with optdiag” 
describes the tables that store statistics and the output of the optdiag command 
that displays the statistics used by the query optimizer.

Chapter 37, “Tuning with dbcc traceon” explains how to use the dbcc traceon 
commands to analyze query optimization problems.

Chapter 38, “Monitoring Performance with sp_sysmon” describes how to use 
a system procedure that monitors Adaptive Server performance.

Index The full index for all three volumes is in the back of Volume 3- Tools for 
Monitoring and Analyzing Performance. 

Related documents The following documents comprise the Sybase Adaptive Server Enterprise 
documentation: 

• The release bulletin for your platform – contains last-minute information 
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the 
World Wide Web. To check for critical product or document information 
that was added after the release of the product CD, use the Sybase 
Technical Library.

• The Installation Guide for your platform – describes installation, upgrade, 
and configuration procedures for all Adaptive Server and related Sybase 
products.

• Configuring Adaptive Server Enterprise for your platform – provides 
instructions for performing specific configuration tasks for Adaptive 
Server.

• What’s New in Adaptive Server Enterprise? – describes the new features 
in Adaptive Server version 12.5, the system changes added to support 
those features, and the changes that may affect your existing applications.

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s 
enhanced version of the relational database language. This manual serves 
as a textbook for beginning users of the database management system. 
This manual also contains descriptions of the pubs2 and pubs3 sample 
databases.

• System Administration Guide – provides in-depth information about 
administering servers and databases. This manual includes instructions 
and guidelines for managing physical resources, security, user and system 
databases, and specifying character conversion, international language, 
and sort order settings.



     About This Book

xvii

• Reference Manual – contains detailed information about all Transact-SQL 
commands, functions, procedures, and datatypes. This manual also 
contains a list of the Transact-SQL reserved words and definitions of 
system tables.

• Performance and Tuning Guide – explains how to tune Adaptive Server 
for maximum performance. This manual includes information about 
database design issues that affect performance, query optimization, how to 
tune Adaptive Server for very large databases, disk and cache issues, and 
the effects of locking and cursors on performance.

• The Utility Guide – documents the Adaptive Server utility programs, such 
as isql and bcp, which are executed at the operating system level.

• The Quick Reference Guide – provides a comprehensive listing of the 
names and syntax for commands, functions, system procedures, extended 
system procedures, datatypes, and utilities in a pocket-sized book. 
Available only in print version.

• The System Tables Diagram – illustrates system tables and their entity 
relationships in a poster format. Available only in print version.

• Error Messages and Troubleshooting Guide – explains how to resolve 
frequently occurring error messages and describes solutions to system 
problems frequently encountered by users. 

• Component Integration Services User’s Guide – explains how to use the 
Adaptive Server Component Integration Services feature to connect 
remote Sybase and non-Sybase databases.

• Java in Adaptive Server Enterprise – describes how to install and use Java 
classes as datatypes, functions, and stored procedures in the Adaptive 
Server database.

• Using Sybase Failover in a High Availability System – provides 
instructions for using Sybase’s Failover to configure an Adaptive Server 
as a companion server in a high availability system.

• Using Adaptive Server Distributed Transaction Management Features – 
explains how to configure, use, and troubleshoot Adaptive Server DTM 
features in distributed transaction processing environments.

• EJB Server User’s Guide – explains how to use EJB Server to deploy and 
execute Enterprise JavaBeans in Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO – 
provides instructions for using Sybase’s DTM XA interface with X/Open 
XA transaction managers.



 

xviii  

• Glossary – defines technical terms used in the Adaptive Server 
documentation.

• Sybase jConnect for JDBC Programmer’s Reference – describes the 
jConnect for JDBC product and explains how to use it to access data stored 
in relational database management systems.

• Full-Text Search Specialty Data Store User’s Guide – describes how to use 
the Full-Text Search feature with Verity to search Adaptive Server 
Enterprise data.

• Historical Server User’s Guide –describes how to use Historical Server to 
obtain performance information for SQL Server and Adaptive Server.

• Monitor Server User’s Guide – describes how to use Monitor Server to 
obtain performance statistics from SQL Server and Adaptive Server.

• Monitor Client Library Programmer’s Guide – describes how to write 
Monitor Client Library applications that access Adaptive Server 
performance data.

Other sources of 
information

Use the Sybase Technical Library CD and the Technical Library Product 
Manuals Web site to learn more about your product:

• Technical Library CD contains product manuals and is included with your 
software. The DynaText browser (downloadable from Product Manuals at 
http://www.sybase.com/detail/1,3693,1010661,00.html) allows you to access 
technical information about your product in an easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation 
package for instructions on installing and starting the Technical Library.

• Technical Library Product Manuals Web site is an HTML version of the 
Technical Library CD that you can access using a standard Web browser. 
In addition to product manuals, you will find links to the Technical 
Documents Web site (formerly known as Tech Info Library), the Solved 
Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Product Manuals Web site, go to Product 
Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications 
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ For the latest information on product certifications 

1 Point your Web browser to Technical Documents at 
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.



     About This Book

xix

3 Select a product name from the product list.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ For the latest information on EBFs and Updates

1 Point your Web browser to Technical Documents at 
http://www.sybase.com/support/techdocs/.

2 Select EBFs/Updates. Enter user name and password information, if 
prompted (for existing Web accounts) or create a new account (a free 
service).

3 Specify a time frame and click Go.

4 Select a product.

5 Click an EBF/Update title to display the report.

❖ To create a personalized view of the Sybase Web site (including support 
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create 
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at 
http://www.sybase.com/support/techdocs/

2 Click MySybase and create a MySybase profile.

Conventions This section describes conventions used in this manual.

Formatting SQL 
statements

SQL is a free-form language. There are no rules about the number of words 

you can put on a line or where you must break a line. However, for readability, 

all examples and syntax statements in this manual are formatted so that each 

clause of a statement begins on a new line. Clauses that have more than one 

part extend to additional lines, which are indented.

Font and syntax 
conventions

The font and syntax conventions used in this manual are shown in Table 1.0:

Table 1: Font and syntax conventions in this manual

Element Example

Command names, command option names, utility 
names, utility flags, and other keywords are bold.

select
sp_configure

Database names, datatypes, file names and path 
names are in italics.

master database 



 

xx  

• Syntax statements (displaying the syntax and all options for a command) 
appear as follows:
sp_dropdevice [ device_name]

or, for a command with more options:

Variables, or words that stand for values that you 
fill in, are in italics.

select 

column_name
 
from 

table_name
 
where 

search_conditions
 

Parentheses are to be typed as part of the command. compute 

row_aggregate

 (

column_name

) 

Curly braces indicate that you must choose at least 
one of the enclosed options. Do not type the braces. 

{cash, check, credit}

 

Brackets mean choosing one or more of the 
enclosed options is optional. Do not type the 
brackets. 

[anchovies]

 

The vertical bar means you may select only one of 
the options shown. 

{die_on_your_feet | live_on_your_knees 
| live_on_your_feet}

 

The comma means you may choose as many of the 
options shown as you like, separating your choices 
with commas to be typed as part of the command.

[extra_cheese, avocados, sour_cream]

 

An ellipsis (...) means that you can repeat the last 
unit as many times as you like.

buy thing = price [cash | check | 
credit] 
 [, thing = price [cash | check | 
credit]]...

 

You must buy at least one thing and give its price. You 
may choose a method of payment: one of the items 
enclosed in square brackets. You may also choose to buy 
additional things: as many of them as you like. For each 
thing you buy, give its name, its price, and (optionally) a 
method of payment.

Element Example



     About This Book

xxi

select column_name

from table_name

where search_conditions

In syntax statements, keywords (commands) are in normal font and identifiers 
are in lowercase: normal font for keywords, italics for user-supplied words.

• Examples of output from the computer appear as follows:

0736 New Age Books Boston MA

0877 Binnet & Hardley Washington DC

1389 Algodata Infosystems Berkeley CA

Case In this manual, most of the examples are in lowercase. However, you can 
disregard case when typing Transact-SQL keywords. For example, SELECT, 
Select, and select are the same. Note that Adaptive Server’s sensitivity to the 
case of database objects, such as table names, depends on the sort order 
installed on Adaptive Server. You can change case sensitivity for single-byte 
character sets by reconfiguring the Adaptive Server sort order. 

See in the System Administration Guide for more information.

Expressions Adaptive Server syntax statements use the following types of expressions:

Table 2: Types of expressions used in syntax statements

Examples Many of the examples in this manual are based on a database called pubtune. 
The database schema is the same as the pubs2 database, but the tables used in 
the examples have more rows: titles has 5000, authors has 5000, and titleauthor 
has 6250. Different indexes are generated to show different features for many 
examples, and these indexes are described in the text.

Usage Definition

expression Can include constants, literals, functions, column identifiers, variables, or 
parameters

logical expression An expression that returns TRUE, FALSE, or UNKNOWN

constant expression An expression that always returns the same value, such as “5+3” or “ABCDE”

float_expr Any floating-point expression or expression that implicitly converts to a floating 
value

integer_expr Any integer expression, or an expression that implicitly converts to an integer value

numeric_expr Any numeric expression that returns a single value

char_expr Any expression that returns a single character-type value

binary_expression An expression that returns a single binary or varbinary value



 

xxii  

The pubtune database is not provided with Adaptive Server. Since most of the 
examples show the results of commands such as set showplan and set statistics 
io, running the queries in this manual on pubs2 tables will not produce the same 
I/O results, and in many cases, will not produce the same query plans as those 
shown here.

If you need help Each Sybase installation that has purchased a support contract has one or more 
designated people who are authorized to contact Sybase Technical Support. If 
you cannot resolve a problem using the manuals or online help, please have the 
designated person contact Sybase Technical Support or the Sybase subsidiary 
in your area.



375

C H A P T E R  1 7 Adaptive Server Optimizer

This chapter introduces the Adaptive Server query optimizer and explains 
the steps performed when you run queries. 

This chapter explains how costs for individual query clauses are 
determined. 

Chapter 20, “Access Methods and Query Costing for Single 
Tables,”explains how these costs are used to estimate the logical, physical, 
and total I/O cost for single table queries.

Chapter 21, “Accessing Methods and Costing for Joins and Subqueries,” 
explains how costs are used when queries join two or more tables, or when 
queries include subqueries.

Definition
The optimizer examines parsed and normalized queries, and information 
about database objects. The input to the optimizer is a parsed SQL query 
and statistics about the tables, indexes, and columns named in the query. 
The output from the optimizer is a query plan. 

Topic Page
Definition 375

Object sizes are important to query tuning 377

Query optimization 378

Factors examined during optimization 379

Preprocessing can add clauses for optimizing 380

Guidelines for creating search arguments 385

Search arguments and useful indexes 386

Join syntax and join processing 392

Datatype mismatches and query optimization 395

Splitting stored procedures to improve costing 403



Definition 

376  

The query plan is compiled code that contains the ordered steps to carry out the 
query, including the access methods (table scan or index scan, type of join to 
use, join order, and so on) to access each table.

Using statistics on tables and indexes, the optimizer predicts the cost of using 
alternative access methods to resolve a particular query. It finds the best query 
plan – the plan that is least the costly in terms of I/O. For many queries, there 
are many possible query plans. Adaptive Server selects the least costly plan, 
and compiles and executes it. 

Steps in query processing
Adaptive Server processes a query in these steps:

1 The query is parsed and normalized. The parser ensures that the SQL 
syntax is correct. Normalization ensures that all the objects referenced in 
the query exist. Permissions are checked to ensure that the user has 
permission to access all tables and columns in the query.

2 Preprocessing changes some search arguments to an optimized form and 
adds optimized search arguments and join clauses.

3 As the query is optimized, each part of the query is analyzed, and the best 
query plan is chosen. Optimization includes:

• Each table is analyzed.

• The cost of using each index that matches a search argument or join 
column is estimated.

• The join order and join type are chosen.

• The final access method is determined.

4 The chosen query plan is compiled.

5 The query is executed, and the results are returned to the user.

Working with the optimizer
The goal of the optimizer is to select the access method for each table that 
reduces the total time needed to process a query. The optimizer bases its choice 
on the statistics available for the tables being queried and on other factors such 
as cache strategies, cache size, and I/O size. A major component of optimizer 
decision-making is the statistics available for the tables, indexes, and columns.



CHAPTER 17    Adaptive Server Optimizer

377

In some situations, the optimizer may seem to make the incorrect choice of 
access methods. This may be the result of inaccurate or incomplete information 
(such as out-of-date statistics). In other cases, additional analysis and the use 
of special query processing options can determine the source of the problem 
and provide solutions or workarounds.

The query optimizer uses I/O cost as the measure of query execution cost. The 
significant costs in query processing are:

• Physical I/O, when pages must be read from disk

• Logical I/O, when pages in cache are read for a query

See access methods and query costing.

Object sizes are important to query tuning
You should know the sizes of your tables and indexes to understanding query 
and system behavior. At several stages of tuning work, you need size data to:

• Understand statistics io reports for a specific query plan. 

Chapter 34, “Using the set statistics Commands,” describes how to use 
statistics io to examine the I/O performed.

• Understand the optimizer’s choice of query plan. Adaptive Server’s cost-
based optimizer estimates the physical and logical I/O required for each 
possible access method and chooses the cheapest method. If you think a 
particular query plan is unusual, you can used dbcc traceon(302) to 
determine why the optimizer made the decision. This output includes page 
number estimates. 

• Determine object placement, based on the sizes of database objects and the 
expected I/O patterns on the objects. You can improve performance by 
distributing database objects across physical devices so that reads and 
writes to disk are evenly distributed. 

Object placement is described in Chapter 5, “Controlling Physical Data 
Placement.”

• Understand changes in performance. If objects grow, their performance 
characteristics can change. One example is a table that is heavily used and 
is usually 100 percent cached. If that table grows too large for its cache, 
queries that access the table can suddenly suffer poor performance. This is 
particularly true for joins requiring multiple scans.



Query optimization 

378  

• Do capacity planning. Whether you are designing a new system or 
planning for growth of an existing system, you need to know the space 
requirements to plan for physical disks and memory needs.

• Understand output from Adaptive Server Monitor and from sp_sysmon 
reports on physical I/O.

See the Adaptive Server System Administration Guide for more information on 
sizing.

Query optimization
To understand the optimization of a query, you need to understand how the 
query accesses database objects, the sizes of the objects, and the indexes on the 
tables to determine whether it is possible to improve the query’s performance.

Some symptoms of optimization problems are:

• A query runs more slowly than you expect, based on indexes and table 
size.

• A query runs more slowly than similar queries.

• A query suddenly starts running more slowly than usual.

• A query processed within a stored procedure takes longer than when it is 
processed as an ad hoc statement.

• The query plan shows the use of a table scan when you expect it to use an 
index.

Some sources of optimization problems are:

• Statistics have not been updated recently, so the actual data distribution 
does not match the values used by Adaptive Server to optimize queries.

• The rows to be referenced by a given transaction do not fit the pattern 
reflected by the index statistics.

• An index is being used to access a large portion of the table.

• where clauses are written in a form that cannot be optimized.

• No appropriate index exists for a critical query.

• A stored procedure was compiled before significant changes to the 
underlying tables were performed.



CHAPTER 17    Adaptive Server Optimizer

379

Factors examined during optimization
Query plans consist of retrieval tactics and an ordered set of execution steps to 
retrieve the data needed by the query. In developing query plans, the optimizer 
examines:

• The size of each table in the query, both in rows and data pages, and the 
number of OAM and allocation pages that need to be read.

• The indexes that exist on the tables and columns used in the query, the type 
of index, and the height, number of leaf pages, and cluster ratios for each 
index.

• Whether the index covers the query, that is, whether the query can be 
satisfied by retrieving data from the index leaf pages without having to 
access the data pages. Adaptive Server can use indexes that cover queries, 
even if no where clauses are included in the query.

• The density and distribution of keys in the indexes.

• The size of the available data cache or caches, the size of I/O supported by 
the caches, and the cache strategy to be used.

• The cost of physical and logical reads.

• Join clauses and the best join order and join type, considering the costs and 
number of scans required for each join and the usefulness of indexes in 
limiting the I/O.

• Whether building a worktable (an internal, temporary table) with an index 
on the join columns would be faster than repeated table scans if there are 
no useful indexes for the inner table in a join.

• Whether the query contains a max or min aggregate that can use an index 
to find the value without scanning the table.

• Whether the data or index pages will be needed repeatedly to satisfy a 
query such as a join or whether a fetch-and-discard strategy can be 
employed because the pages need to be scanned only once.

For each plan, the optimizer determines the total cost by computing the logical 
and physical I/Os. Adaptive Server then uses the cheapest plan.

Stored procedures and triggers are optimized when the object is first executed, 
and the query plan is stored in the procedure cache. If other users execute the 
same procedure while an unused copy of the plan resides in cache, the 
compiled query plan is copied in cache, rather than being recompiled.



Preprocessing can add clauses for optimizing 

380  

Preprocessing can add clauses for optimizing
After a query is parsed and normalized, but before the optimizer begins its 
analysis, the query is preprocessed to increase the number of clauses that can 
be optimized:

• Some search arguments are converted to equivalent arguments.

• Some expressions used as search arguments are preprocessed to generate 
a literal value that can be optimized.

• Search argument transitive closure is applied where possible.

• Join column transitive closure is applied where possible.

• For some queries that use or, additional search arguments can be generated 
to provide additional optimization paths.

The changes made by preprocessing are transparent unless you are examining 
the output of query tuning tools such as showplan, statistics io, or dbcc 
traceon(302). If you run queries that benefit from the addition of optimized 
search arguments, you see the added clauses:

• In additional costing blocks for the added clauses to be optimized in dbcc 
traceon(302) output.

• In showplan output, you may see “Keys are” messages for tables where 
you did not specify a search argument or a join.

Converting clauses to search argument equivalents
Preprocessing looks for some query clauses that it can convert to the form used 
for search arguments (SARGs). These are listed in Table 17-1. 

Table 17-1: Search argument equivalents

Clause Conversion

between Converted to >= and <= clauses. For example, between 10 and 20 is 
converted to >= 10 and <= 20.

like If the first character in the pattern is a constant, like clauses can be 
converted to greater than or less than queries. For example, like "sm%" 
becomes >= "sm" and < "sn". 

If the first character is a wildcard, a clause such as like "%x" cannot use an 
index for access, but histogram values can be used to estimate the number 
of matching rows.



CHAPTER 17    Adaptive Server Optimizer

381

Converting expressions into search arguments
Many expressions are converted into literal search strings before query 
optimization. In the following examples, the processed expressions are shown 
as they appear in the search argument analysis of dbcc traceon(302) output:

These conversions allow the optimizer to use the histogram values for a 
column rather than using default selectivity values.

The following are exceptions:

• The getdate function

• Most system functions such as object_id or object_name 

These are not converted to literal values before optimization.

Search argument transitive closure
Preprocessing applies transitive closure to search arguments. For example, the 
following query joins titles and titleauthor on title_id and includes a search 
argument on titles.title_id:

in (values_list) Converted to a list of or queries, that is, int_col in (1, 2, 3) becomes int_col 
= 1 or int_col = 2 or int_col = 3.

Clause Conversion

Operation Example of where Clause Processed expression

Implicit 
conversion

numeric_col = 5 numeric_col = 5.0

Conversion 
function

int_column = convert(int, "77") int_column = 77

Arithmetic salary = 5000*12 salary = 6000
0

Math functions width = sqrt(900) width = 30

String functions shoe_width = replicate("E", 5) shoe_width = "EEEEE"

String 
concatenation

full_name = "Fred" + " " + "Simpson" full_name = "Fred Simpson"

Date functions week = datepart(wk, "5/22/99") week = 21

Note  getdate() cannot be optimized.



Preprocessing can add clauses for optimizing 

382  

select au_lname, title
from titles t, titleauthor ta, authors a
where t.title_id = ta.title_id
        and a.au_id = ta.au_id
        and t.title_id = "T81002"

This query is optimized as if it also included the search argument on 
titleauthor.title_id:

select au_lname, title
from titles t, titleauthor ta, authors a
where t.title_id = ta.title_id
        and a.au_id = ta.au_id
        and t.title_id = "T81002"
        and ta.title_id = "T81002"

With this additional clause, the optimizer can use index statistics on 
titles.title_id to estimate the number of matching rows in the titleauthor table. 
The more accurate cost estimates improve index and join order selection.

Join transitive closure
Preprocessing applies transitive closure to join columns for normal equijoins if 
join transitive closure is enabled at the server or session level. The following 
query specifies the equijoin of t1.c11 and t2.c21, and the equijoin of t2.c21 and 
t3.c31:

select * 
from t1, t2, t3
where t1.c11 = t2.c21 
and t2.c21 = t3.c31
and t3.c31 = 1

Without join transitive closure, the only join orders considered are (t1, t2, t3), 
(t2, t1, t3), (t2, t3, t1),and (t3, t2, t1). By adding the join on t1.c11 = t3.31, the 
optimizer expands the list of join orders with these possibilities: (t1, t3, t2) and 
(t3, t1, t2). Search argument transitive closure applies the condition specified 
by t3.c31 = 1 to the join columns of t1 and t2. 

Transitive closure is used only for normal equijoins, as shown above. Join 
transitive closure is not performed for:

• Non-equijoins; for example, t1.c1 > t2.c2

• Equijoins that include an expression; for example, t1.c1 = t2.c1 + 5

• Equijoins under an or clause



CHAPTER 17    Adaptive Server Optimizer

383

• Outer joins; for example t1.c11 *= t2.c2 or left join or right join

• Joins across subquery boundaries

• Joins used to check referential integrity or the with check option on views

• Columns of incompatible datatypes

Enabling join transitive closure

A System Administrator can enable join transitive closure at the server level 
with the enable sort-merge joins and JTC configuration parameter. This 
configuration parameter also enables merge joins. At the session level, set jtc 
on enables join transitive closure, and takes precedence over the server-wide 
setting. For more information on the types of queries likely to benefit from the 
use of join transitive closure. 

See “Enabling and disabling join transitive closure” on page 418.

Predicate transformation and factoring
Predicate transformation and factoring improves the number of choices 
available to the optimizer. It adds clauses that can be optimized to a query by 
extracting clauses from blocks of predicates linked with or into clauses linked 
by and. These additional optimized clauses mean that there are more access 
paths available for query execution. The original or predicates are retained to 
ensure query correctness.

During predicate transformation:

1 Simple predicates (joins, search arguments, and in lists) that are an exact 
match in each or clause are extracted. In the sample query, this clause 
matches exactly in each block, so it is extracted:

 t.pub_id = p.pub_id

between clauses are converted to greater-than-or-equal and less-than-or-
equal clauses before predicate transformation. The sample query above 
uses between 15 in both query blocks (though the end ranges are different). 
The equivalent clause is extracted by step 1:

price >=15

2 Search arguments on the same table are extracted; all terms that reference 
the same table are treated as a single predicate during expansion. Both type 
and price are columns in the titles table, so the extracted clauses are:



Preprocessing can add clauses for optimizing 

384  

(type = "travel" and price >=15 and price <= 30)
or
(type = "business" and price >= 15 and price <= 50)

3 in lists and or clauses are extracted. If there are multiple in lists for a table 
within one of the blocks, only the first is extracted. The extracted lists for 
the sample query are:

 p.pub_id in ("P220", "P583", "P780")
or
 p.pub_id in ("P651", "P066", "P629")

4 These steps can overlap and extract the same clause, so any duplicates are 
eliminated. 

5 Each generated term is examined to determine whether it can be used as 
an optimized search argument or a join clause. Only those terms that are 
useful in query optimization are retained.

6 The additional clauses are added to the existing query clauses that were 
specified by the user.

Example

All clauses optimized in this query are enclosed in the or clauses:

select p.pub_id, price
from publishers p, titles t
where (
    t.pub_id = p.pub_id
    and type = "travel"
    and price between 15 and 30
    and p.pub_id in ("P220", "P583", "P780")
    )
or  (
    t.pub_id = p.pub_id
    and type = "business"
    and price between 15 and 50
    and p.pub_id in ("P651", "P066", "P629")
    )

Predicate transformation pulls clauses linked with and from blocks of clauses 
linked with or, such as those shown above. It extracts only clauses that occur 
in all parenthesized blocks. If the example above had a clause in one of the 
blocks linked with or that did not appear in the other clause, that clause would 
not be extracted.



CHAPTER 17    Adaptive Server Optimizer

385

Guidelines for creating search arguments
Follow these guidelines when you write search arguments for your queries:

• Avoid functions, arithmetic operations, and other expressions on the 
column side of search clauses. When possible, move functions and other 
operations to the expression side of the clause.

• Avoid incompatible datatypes for columns that will be joined and for 
variables and parameter used as search arguments. 

See “Datatype mismatches and query optimization” on page 395 for more 
information.

• Use the leading column of a composite index as a search argument. The 
optimization of secondary keys provides less performance.

• Use all the search arguments you can to give the optimizer as much as 
possible to work with.

• If a query has more than 102 predicates for a table, put the most potentially 
useful clauses near the beginning of the query, since only the first 102 
SARGs on each table are used during optimization. (All of the search 
conditions are used to qualify the rows.)

• Some queries using > (greater than) may perform better if you can rewrite 
them to use >= (greater than or equal to). For example, this query, with an 
index on int_col uses the index to find the first value where int_col equals 
3, and then scans forward to find the first value that is greater than 3. If 
there are many rows where int_col equals 3, the server has to scan many 
pages to find the first row where int_col is greater than 3:

select * from table1 where int_col > 3

It is probably more efficient to write the query like this:

select * from table1 where int_col >= 4

This optimization is more difficult with character strings and floating-
point data. You need to know your data.

• Check showplan output to see which keys and indexes are used.

• If you expect an index is not being used when you expect it to be, check 
dbcc traceon(302) output to see if the optimizer is considering the index. 



Search arguments and useful indexes 

386  

Search arguments and useful indexes
It is important to distinguish between where and having clause predicates that 
can be used to optimize the query, and those that are used later during query 
processing to filter the rows to be returned.

Search arguments can be used to determine the access path to the data rows 
when a column in the where clause matches a leading index key. The index can 
be used to locate and retrieve the matching data rows. Once the row has been 
located in the data cache or has been read into the data cache from disk, any 
remaining clauses are applied.

For example, if the authors table has on an index on au_lname and another on 
city, either index can be used to locate the matching rows for this query:

select au_lname, city, state
from authors
where city = "Washington"
and au_lname = "Catmull"

The optimizer uses statistics, including histograms, the number of rows in the 
table, the index heights, and the cluster ratios for the index and data pages to 
determine which index provides the cheapest access. The index that provides 
the cheapest access to the data pages is chosen and used to execute the query, 
and the other clause is applied to the data rows once they have been accessed.

Search argument syntax
Search arguments (SARGs) are expressions in one of these forms: 

<column> <operator> <expression>

<expression> <operator> <column> 

<column> is null

Where:

• column is only a column name. If functions, expressions, or concatenation 
are added to the column name, an index on the column cannot be used.

• operator must be one of the following:

 =, >, <, >=, <=, !>, !<, <>, !=, is null 

• expression is either a constant, or an expression that evaluates to a 
constant. The optimizer uses the index statistics differently, depending on 
whether the value of the expression is known at compile time:



CHAPTER 17    Adaptive Server Optimizer

387

• If expression is a known constant or can be converted to a known 
constant during preprocessing, it can be compared to the histogram 
values stored for an index to return accurate row estimates. 

• If the value of expression is not known at compile time, the optimizer 
uses the total density to estimate the number of rows to be returned by 
the query. The value of variables set in a query batch or parameters set 
within a stored procedure cannot be known until execution time.

• If the datatype of the expression is not compatible with the datatype 
of the column, an index cannot be used, and is not considered. 

See “Datatype mismatches and query optimization” on page 395 for 
more information.

Nonequality operators

The nonequality operators, < > and !=, are special cases. The optimizer checks 
for covering nonclustered indexes if the column is indexed and uses a 
nonmatching index scan if an index covers the query. However, if the index 
does not cover the query, the table is accessed via a table scan.

Examples of SARGs

The following are some examples of clauses that can be fully optimized. If 
there are statistics on these columns, they can be used to help estimate the 
number of rows the query will return. If there are indexes on the columns, the 
indexes can be used to access the data:

au_lname = "Bennett" 
price >= $12.00
advance > $10000 and advance < $20000
au_lname like "Ben%" and price > $12.00

The following search arguments cannot be optimized:

advance * 2 = 5000  /*expression on column side
                     not permitted */
substring(au_lname,1,3) = "Ben" /* function on
                                column name */

These two clauses can be optimized if written in this form:

advance = 5000/2
au_lname like "Ben%"

Consider this query, with the only index on au_lname:



Search arguments and useful indexes 

388  

select au_lname, au_fname, phone
    from authors
    where au_lname = "Gerland"
        and city = "San Francisco"

The clause qualifies as a SARG: 

au_lname = "Gerland" 

• There is an index on au_lname.

• There are no functions or other operations on the column name.

• The operator is a valid SARG operator.

• The datatype of the constant matches the datatype of the column.

city = "San Francisco" 

This clause matches all the criteria above except the first—there is no index on 
the city column. In this case, the index on au_lname is used for the query. All 
data pages with a matching last name are brought into cache, and each 
matching row is examined to see if the city matches the search criteria.

How statistics are used for SARGS
When you create an index, statistics are generated and stored in system tables. 
Some of the statistics relevant to determining the cost of search arguments and 
joins are:

• Statistics about the index: the number of pages and rows, the height of the 
index, the number of leaf pages, the average leaf row size.

• Statistics about the data in the column:

• A histogram for the leading column of the index. Histograms are used 
to determine the selectivity of the SARG, that is, how many rows from 
the table match a given value.

• Density values, measuring the density of keys in the index.

• Cluster ratios that measure the fragmentation of data storage and the 
effectiveness of large I/O.

Only a subset of these statistics (the number of leaf pages, for example) are 
maintained during query processing. Other statistics are updated only when 
you run update statistics or when you drop and re-create the index. You can 
display these statistics using optdiag. 



CHAPTER 17    Adaptive Server Optimizer

389

See Chapter 36, “Statistics Tables and Displaying Statistics with optdiag.”

Histogram cells

When you create an index, a histogram is created on the first column of the 
index. The histogram stores information about the distribution of values in the 
column. Then you can use update statistics to generate statistics for the minor 
keys of a compound index and columns used in unindexed search clauses.

The histogram for a column contains data in a set of steps or cells. You can 
specify the number of cells can when the index is created or when the update 
statistics command is run. For each cell, the histogram stores a column value 
and a weight for the cell.

There are two types of cells in histograms:

• A frequency cell represents a value that has a high proportion of 
duplicates in the column. The weight of a frequency cell times the number 
of rows in the table equals the number of rows in the table that match the 
value for the cell. If a column does not have highly duplicated values, there 
are only range cells in the histogram.

• Range cells represent a range of values. Range cell weights and the range 
cell density are used for estimating the number of rows to be returned 
when search argument values falls within a range cell.

For more information on histograms, see “Histogram displays” on page 851.

Density values

Density is a measure of the average proportion of duplicate keys in the index. 
It varies between 0 and 1. An index with N rows whose keys are unique has a 
density of 1/N; an index whose keys are all duplicates of each other has a 
density of 1.

For indexes with multiple keys, density values are computed and stored for 
each prefix of keys in the index. That is, for an index on columns A, B, C, D, 
densities are stored for:

• A

• A, B

• A, B, C

• A, B, C, D



Search arguments and useful indexes 

390  

Range cell density and total density

For each prefix subset, two density values are stored:

• Range cell density, used for search arguments

• Total density, used for joins

Range cell density represents the average number of duplicates of all values 
that are represented by range cells in the histogram. Total density represents the 
average number of duplicates for all values, those in both frequency and range 
cells. Total density is used to estimate the number of matching rows for joins 
and for search arguments whose value is not known when the query is 
optimized.

How the optimizer uses densities and histograms

When the optimizer analyzes a SARG, it uses the histogram values, densities, 
and the number of rows in the table to estimate the number of rows that match 
the value specified in the SARG:

• If the SARG value matches a frequency cell, the estimated number of 
matching rows is equal to the weight of the frequency cell multiplied by 
the number of rows in the table. This query includes a data value with a 
high number of duplicates, so it matches a frequency cell:

where authors.city = "New York"

If the weight of the frequency cell is #.015606, and the authors table has 
5000 rows, the optimizer estimates that the query returns 5000 * .015606 
= 78 rows.

• If the SARG value falls within a range cell, the optimizer uses the range 
cell density to estimate the number of rows. For example, a query on a city 
value that falls in a range cell, with a range cell density of .000586 for the 
column, would estimate that 5000 * .000586 = 3 rows would be returned.

• For range queries, the optimizer adds the weights of all cells spanned by 
the range of values. When the beginning or end of the range falls in a range 
cell, the optimizer uses interpolation to estimate the number of rows from 
that cell that are included in the range.

Using statistics on multiple search arguments
When there are multiple search arguments on the same table, the optimizer uses 
statistics to combine the selectivity of the search arguments.



CHAPTER 17    Adaptive Server Optimizer

391

This query specifies search arguments for two columns in the table:

select title_id 
from titles 
where type = "news" 
and price < $20

With an index on type, price, the selectivity estimates vary, depending on 
whether statistics have been created for price:

• With only statistics for type, the optimizer uses the frequency cell weight 
for type and a default selectivity for price. The selectivity for type is 
#.106600, and the default selectivity for an open-ended range query is 
33%. The number of rows to be returned for the query is estimated using 
.106600 * .33, or .035178. With 5000 rows in the table, the estimate is 171 
rows. 

See Table 17-2 for the default values used when statistics are not available.

• With statistics added for price, the histogram is used to estimate that 
.133334 rows match the search argument on price. Multiplied by the 
selectivity of type, the result is .014213, and the row estimate is 71 rows.

The actual number of rows returned is 53 rows for this query, so the additional 
statistics improved the accuracy. For this simple single-table query, the more 
accurate selectivity did not change the access method, the index on type, price. 
For some single-table queries, however, the additional statistics can help the 
optimizer make a better choice between using a table scan or using other 
indexes. In join queries, having more accurate statistics on each table can result 
in more efficient join orders.

Default values for search arguments
When statistics are not available for a search argument or when the value of a 
search argument is not known at optimization, the optimizer uses default 
values. These values are shown in Table 17-2.



Join syntax and join processing 

392  

Table 17-2: Density approximations for unknown search arguments

SARGs using variables and parameters
Since the optimizer computes its estimates before a query executes, it cannot 
know the value of a variable that is set in the batch or procedure. If the value 
of a variable is not known at compile time, the optimizer uses the default values 
shown in Table 17-2

For example, the value of @city is set in this batch:

declare @city varchar(25)
select @city = city from publishers
    where pub_name = "Brave Books"
select au_lname from authors where city = @city

The optimizer uses the total density, .000879, and estimates that 4 rows will be 
returned; the actual number of rows could be far larger. 

A similar problem exists when you set the values of variables inside a stored 
procedure. In this case, you can improve performance by splitting the 
procedure: set the variable in the first procedure and then call the second 
procedure, passing the variables as parameters. The second procedure can then 
be optimized correctly. 

See “Splitting stored procedures to improve costing” on page 403 for an 
example.

Join syntax and join processing
Join clauses take this form:

table1.column_name <operator> table2.column_name

The join operators are:

Operation Type Operator Density Approximation

Equality = Total density, if statistics are available 
for the column, or 10%

Open-ended range <, <=, 
>, or >=

33%

Closed range between 25%



CHAPTER 17    Adaptive Server Optimizer

393

=, >, >=, <, <=, !>, !<, !=, <>, *=, =*

And:

table1 [ left | right ] join table2 
    on column_name = column_name
table1 inner join table2
    on column_name = column_name

When joins are optimized, the optimizer can only consider indexes on column 
names. Any type of operator or expression in combination with the column 
name means that the optimizer does not evaluate using an index on the column 
as a possible access method. If the columns in the join are of incompatible 
datatypes, the optimizer can consider an index on only one of the columns.

How joins are processed
When the optimizer creates a query plan for a join query:

• It evaluates indexes for each table by estimating the I/O required for each 
possible index and for a table scan.

• It determines the join order, basing the decision on the total cost estimates 
for the possible join orders. It estimates costs for both nested-loop joins 
and sort-merge joins.

• If no useful index exists on the inner table of a join, the optimizer may 
decide to build a temporary index, a process called reformatting. 

See “Reformatting strategy” on page 492.

• It determines the I/O size and caching strategy.

• It also compares the cost of serial and parallel execution, if parallel query 
processing is enabled. 

See Chapter 23, “Parallel Query Optimization,” for more information.

Factors that determine costs on single-table selects, such as appropriate 
indexing, search argument selectivity, and density of keys, become much more 
critical for joins.

When statistics are not available for joins
If statistics are not available for a column in a join, the optimizer uses default 
values: 



Join syntax and join processing 

394  

For example, in the following query, the optimizer uses 1/500 for the join 
selectivity for both tables if there are no statistics for either city column, and 
stores has 500 rows and authors has 5000 rows:

select au_fname, au_lname, stor_name
    from authors a, stores s
    where a.city = s.city

Density values and joins
When statistics are available on a join column, the total density is used to 
estimate how many rows match each join key. If the authors table has 5000 
rows, and the total density for the city column is .000879, the optimizer 
estimates that 5000 * .000879 = 4 rows will be returned from authors each time 
a join on the city column matches a row from the other table. 

Multiple column joins
When a join query specifies multiple join columns on two tables, and there is 
a composite index on the columns, the composite total density is used. For 
example, if authors and publishers each has an index on city, state, the 
composite total density for city, state is used for each table in this query:

select au_lname, pub_name
from authors a, publishers p
where a.city = p.city
and a.state = p.state

Search arguments and joins on a table
When there are search arguments and joins on a table, the selectivities of the 
columns are combined during join costing to estimate the number of rows more 
accurately.

Operator type Examples Default selectivity

Equality t1.c1 = t1.c2 1/rows in smaller table

Nonequality t1.c1 > t1.c2
t1.c1 >= t1.c2
t1.c1 < t1.c2
t1.c1 <= t1.c2

33%



CHAPTER 17    Adaptive Server Optimizer

395

The following example joins authors and stores on both the city and state 
columns. There is a search argument on authors.state, so search argument 
transitive closure adds the search argument for stores.state table also:

select au_fname, au_lname, stor_name
from authors a, stores s
where  a.city = s.city
and a.state = s.state 
and a.state = "GA"

If there is an index on city for each table, but no statistics available for state, the 
optimizer uses the default search argument selectivity (10%) combined with 
the total density for city. This overestimates the number of rows that match the 
search argument for this query, for a state with more rows that match a search 
argument on state, it would underestimate the number of rows. When statistics 
exist for state on each table, the estimate of the number of qualifying rows 
improves, and overall costing for the join query improves also.

Datatype mismatches and query optimization
One common problem when queries fail to use indexes as expected is datatype 
mismatches. Datatype mismatches occur:

• With search clauses using variables or stored procedure parameters that 
have a different datatype than the column, for example:

where int_col = @money_parameter

• In join queries when the columns being joined have different datatypes, for 
example:

where tableA.int_col = tableB.money_col

Datatype mismatches lead to optimization problems when they prevent the 
optimizer from considering an index. The most common problems arise from:

• Comparisons between the integer types, int, smallint and tinyint

• Comparisons between money and smallmoney

• Comparisons between datetime and smalldatetime

• Comparisons between numeric and decimal types of differing precision and 
scale



Datatype mismatches and query optimization 

396  

• Comparisons between numeric or decimal types and integer or money 
columns

To avoid problems, use the same datatype (including the same precision and 
scale) for columns that are likely join candidates when you create tables. Use 
a matching datatype for any variables or stored procedure parameters used as 
search arguments. The following sections detail the rules and considerations 
applied when the same datatype is not used, and provide some troubleshooting 
tips.

Overview of the datatype hierarchy and index issues
The datatype hierarchy controls the use of indexes when search arguments or 
join columns have different datatypes. The following query prints the hierarchy 
values and datatype names:

select hierarchy, name from systypes order by 1
hierarchy name
 --------- ------------------------------
         1 floatn
         2 float
         3 datetimn
         4 datetime
         5 real
         6 numericn
         7 numeric
         8 decimaln
         9 decimal
        10 moneyn
        11 money
        12 smallmoney
        13 smalldatetime
        14 intn
        15 int
        16 smallint
        17 tinyint
        18 bit
        19 univarchar
        20 unichar
        21 reserved
        22 varchar
        22 sysname
        22 nvarchar
        23 char
        23 nchar



CHAPTER 17    Adaptive Server Optimizer

397

        24 varbinary
        24 timestamp
        25 binary
        26 text
        27 image

If you have created user-defined datatypes, they are also listed in the query 
output, with the corresponding hierarchy values.

The general rule is that when different datatypes are used, the 
systypes.hierarchy value determines whether an index can be used.

• For search arguments, the index is considered when the column’s datatype 
is same as, or precedes, the hierarchy value of the parameter or variable. 

• For a join, the index is considered only on the column whose 
systypes.hierarchy value is the same as the other column’s, or precedes the 
other column’s in the hierarchy.

• When char and unichar datatypes are used together, char is converted to 
unichar.

The exceptions are:

• Comparisons between char and varchar, unichar and univarchar, or between 
binary and varbinary datatypes. For example, although their hierarchy 
values are 23 and 22 respectively, char and varchar columns are treated as 
the same datatype for index consideration purposes. The index is 
considered for both columns in this join:

where t1.char_column = t2.varchar_column

char columns that accept NULL values are stored as varchar, but indexes 
can still be used on both columns for joins.

• The null type of the column has no effect, that is, although float and floatn 
have different hierarchy values, they are always treated as the same 
datatype.

• Comparisons of decimal or numeric types also take precision and scale into 
account. This includes comparisons of numeric or decimal types to each 
other, and comparisons of numeric or decimal to other datatypes such as int 
or money. 

See “Comparison of numeric and decimal datatypes” on page 398 for 
more information.



Datatype mismatches and query optimization 

398  

Comparison of numeric and decimal datatypes

When a query joins columns of numeric or decimal datatypes, an index can be 
used when both of these conditions are true:

• The scale of the column being considered for a join equals or exceeds the 
scale of the other join column, and 

• The length of the integer portion of the column equals or exceeds the 
length of the other column’s integer portion. 

Here are some examples of when indexes can be considered:

Comparing numeric types to other datatypes

When comparing numeric and decimal columns to columns of other numeric 
datatypes, such as money or int:

• numeric and decimal precede integer and money columns in the hierarchy, 
so the index on the numeric or decimal column is the only index 
considered.

• The precision and scale requirements must be met for the numeric or 
decimal index to be considered. The scale of the numeric column must be 
equal to, or greater than, the scale of the integer or money column, and the 
number of digits in the integer portion of the numeric column must be 
equal to or greater than the maximum number of digits usable for the 
integer or money column.

The precision and scale of integer and money types is shown in Table 17-3.

Datatypes in the join Indexes considered

numeric(12,4) and 
numeric(16,4)

Index considered only for numeric(16,4), the 
integer portion of numeric(12,4) is smaller.

numeric(12,4) and 
numeric(12,8)

Neither index is considered, integer portion is 
smaller for numeric(12,8) and scale is smaller 
for numeric(12,4).

numeric(12,4) and 
numeric(12,4)

Both indexes are considered.



CHAPTER 17    Adaptive Server Optimizer

399

Table 17-3: Precision and scale of integer and money types

Datatypes for parameters and variables used as SARGs
When declaring datatypes for variables or stored procedure parameters to be 
used as search arguments, match the datatype of the column in the variable or 
parameter declaration to ensure the use of an index. For example:

declare @int_var int 
select @int_var = 50 
select * 
from t1 
where int_col = @int_var

Use of the index depends on the precedence of datatypes in the hierarchy. The 
index on a column can be used only if the column’s datatype precedes the 
variable’s datatype. For example, int precedes smallint and tinyint in the 
hierarchy. Here are just the integer types:

hierarchy name
 --------- ------------------------------
        15 int
        16 smallint
        17 tinyint

If a variable or parameter has a datatype of smallint or tinyint, an index on an int 
column can be used for a query. But an index on a tinyint column cannot be used 
for an int parameter.

Similarly, money precedes int. If a variable or parameter of money is compared 
to an int column, an index on the int column cannot be used.

This eliminates issues that could arise from truncation or overflow. For 
example, it would not be useful or correct to attempt to truncate the money 
value to 5 in order to use an index on int_col for this query:

declare @money_var money 
select @money_var = $5.12 
select * from t1 where int_col = @money_var

Datatype Precision, scale

tinyint 3,0

smallint 5,0

int 10,0

smallmoney 10,4

money 19,4



Datatype mismatches and query optimization 

400  

Troubleshooting datatype mismatch problems fo SARGs

If there is a datatype mismatch problem with a search argument on an indexed 
column, the query can use another index if there are other search arguments or 
it can perform a table scan. showplan output displays the access method and 
keys used for each table in a query.

You can use dbcc traceon(302) to determine whether an index is being 
considered. For example, using an integer variable as a search argument on 
int_col produces the following output:

Selecting best index for the SEARCH CLAUSE:
    t1.int_col = unknown-value

SARG is a local variable or the result of a function or 
an expression, using the total density to estimate 
selectivity.

Estimated selectivity for int_col,
   selectivity = 0.020000.

Using an incompatible datatype such as money for a variable used as a search 
argument on an integer column does not produce a “Selecting best index for the 
SEARCH CLAUSE” block in dbcc traceon(302) output, indicating that the 
index is not being considered, and cannot be used. If an index is not used as you 
expect in a query, looking for this costing section in dbcc traceon(302) output 
should be one of your first debugging steps.

The “unknown-value” and the fact that the total density is used to estimate the 
number of rows that match this search argument is due to the fact that the value 
of the variable was set in the batch; it is not a datatype mismatch problem.

See “SARGs using variables and parameters” on page 392 for more 
information.

Compatible datatypes for join columns
The optimizer considers an index for joined columns only when the column 
types are the same or when the datatype of the join column precedes the other 
column’s datatype in the datatype hierarchy. This means that the optimizer 
considers using the index on only one of the join columns, limiting the choice 
of join orders.

For example, this query joins columns of decimal and int datatypes:

select * 



CHAPTER 17    Adaptive Server Optimizer

401

from t1, t2 
where t1.decimal_col = t2.int_col

decimal precedes int in the hierarchy, so the optimizer can consider an index on 
t1.decimal_col, but cannot use an index on t2.int_col. The result is likely to be a 
table scan of t2, followed by use of the index on t1.decimal_col.

Table 17-4 shows how the hierarchy affects index choice for some commonly 
problematic datatypes.

Table 17-4: Indexes considered for mismatched column datatypes

Troubleshooting datatype mismatch problems for joins

If you suspect that an index is not being considered on one side of a join due to 
datatype mismatches, use dbcc traceon(302). In the output, look for “Selecting 
best index for the JOIN CLAUSE”. If datatypes are compatible, you see two of 
these blocks for each join; for example:

Selecting best index for the JOIN CLAUSE:
t1.int_col = t2.int_col

And later in the output for the other table in the join:

Selecting best index for the JOIN CLAUSE:
t2.int_col = t1.int_col

For a query that compares incompatible datatypes, for example, comparing a 
decimal column to an int, column, there is only the single block:

Selecting best index for the JOIN CLAUSE:
t1.decimal_col = t2.int_col

This means that the join costing for using an index with t2.int_col as the outer 
column is not performed.

Suggestions on datatypes and comparisons
To avoid datatype mismatch problems:

Join column types Index considered on column of type

money and smallmoney money

datetime and smalldatetime datetime

int and smallint int

int and tinyint int

smallint and tinyint smallint



Datatype mismatches and query optimization 

402  

• When you create tables, use the same datatypes for columns that will be 
joined.

• If columns of two frequently joined tables have different datatypes, 
consider using alter table...modify to change the datatype of one of the 
columns.

• Use the column’s datatype whenever declaring variables or stored 
procedure parameters that will be used as search arguments.

• Consider user-defined datatype definitions. Once you have created 
definitions with sp_addtype, you can use them in commands such create 
table, alter table, and create procedure, and for datatype declarations.

• For some queries where datatype mismatches cause performance 
problems, you may be able to use the convert function so that indexes are 
considered on the other table in the join. The next section describes this 
work around.

Forcing a conversion to the other side of a join
If a join between different datatypes is unavoidable, and it impacts 
performance, you can, for some queries, force the conversion to the other side 
of the join. In the following query, an index on smallmoney_col cannot be used, 
so the query performs a table scan on huge_table:

select * 
from tiny_table, huge_table
where tiny_table.money_col = 
    huge_table.smallmoney_col

Performance improves if the index on huge_table.smallmoney_col can be used. 
Using the convert function on the money column of the small table allows the 
index on the large table to be used, and a table scan is performed on the small 
table:

select * 
from tiny_table, huge_table
where convert(smallmoney,tiny_table.money_col) = 
    huge_table.smallmoney_col

This workaround assumes that there are no values in tinytable.money_col that 
are large enough to cause datatype conversion errors during the conversion to 
smallmoney. If there are values larger than the maximum value for smallmoney, 
you can salvage this solution by adding a search argument specifying the 
maximum values for a smallmoney column:



CHAPTER 17    Adaptive Server Optimizer

403

select smallmoney_col, money_col 
from tiny_table , huge_table 
where convert(smallmoney,tiny_table.money_col) =
    huge_table.smallmoney_col
and tiny_table.money_col <= 214748.3647

Converting floating-point and numeric data can change the meaning of some 
queries. This query compares integers and floating-point numbers:

select *
    from tab1, tab2
    where tab1.int_column = tab2.float_column

In the query above,you cannot use an index on int_column. This conversion 
forces the index access to tab1, but also returns different results than the query 
that does not use convert:

select *
from tab1, tab2
where tab1.int_col = convert(int, tab2.float_col)

For example, if int_column is 4, and float_column is 4.2, the modified query 
implicitly converts to a 4, and returns a row not returned by the original query. 
The workaround can be salvaged by adding this self-join:

and tab2.float_col = convert(int, tab2.float_col)

This workaround assumes that all values in tab2.float_col can be converted to 
int without conversion errors.

Splitting stored procedures to improve costing
The optimizer cannot use statistics the final select in the following procedure, 
because it cannot know the value of @city until execution time:

create procedure au_city_names 
    @pub_name varchar(30)
as
    declare @city varchar(25)
    select @city = city 
    from publishers where pub_name = @pub_name
    select au_lname 
        from authors 
        where city = @city



Basic units of costing 

404  

The following example shows the procedure split into two procedures. The 
first procedure calls the second one:

create procedure au_names_proc 
    @pub_name varchar(30) 
as 
    declare @city varchar(25) 
    select @city = city  
        from publishers 
        where pub_name = @pub_name 
    exec select_proc @city
create procedure select_proc @city varchar(25) 
as
    select au_lname 
        from authors 
        where city = @city

When the second procedure executes, Adaptive Server knows the value of 
@city and can optimize the select statement. Of course, if you modify the value 
of @city in the second procedure before it is used in the select statement, the 
optimizer may choose the wrong plan because it optimizes the query based on 
the value of @city at the start of the procedure. If @city has different values 
each time the second procedure is executed, leading to very different query 
plans, you may want to use with recompile.

Basic units of costing
When the optimizer estimates costs for the query, the two factors it considers 
are the cost of physical I/O, reading pages from disk, and the cost of logical I/O, 
finding pages in the data cache. The optimizer assigns 18 as the cost of a 
physical I/O and 2 as the cost of a logical I/O. These are relative units of cost 
and do not represent time units such as milliseconds or clock ticks. These units 
are used in the formulas in this chapter, with the physical I/O costs first, then 
the logical I/O costs. The total cost of accessing a table can be expressed as: 

Cost = All physical IOs * 18 + All logical IOs * 2



405

C H A P T E R  1 8 Advanced Optimizing Tools

This chapter describes query processing options that affect the optimizer’s 
choice of join order, index, I/O size and cache strategy.

Special optimizing techniques
Being familiar with the information presented in the Basics volume helps 
to understand the material in this chapter. Use caution, as the tools allow 
you to override the decisions made by Adaptive Server’s optimizer and 
can have an extreme negative effect on performance if misused. You 
should understand the impact on the performance of both your individual 
query and the possible implications for overall system performance.

Adaptive Server’s advanced, cost-based optimizer produces excellent 
query plans in most situations. But there are times when the optimizer 
does not choose the proper index for optimal performance or chooses a 
suboptimal join order, and you need to control the access methods for the 
query. The options described in this chapter allow you that control.

Topic Page
Special optimizing techniques 405

Specifying optimizer choices 406

Specifying table order in joins 407

Specifying the number of tables considered by the optimizer 409

Specifying an index for a query 410

Specifying I/O size in a query 412

Specifying the cache strategy 415

Controlling large I/O and cache strategies 416

Enabling and disabling merge joins 417

Enabling and disabling join transitive closure 418

Suggesting a degree of parallelism for a query 419

Concurrency optimization for small tables 421



Specifying optimizer choices 

406  

In addition, while you are tuning, you may want to see the effects of a 
different join order, I/O size, or cache strategy. Some of these options let 
you specify query processing or access strategy without costly 
reconfiguration.

Adaptive Server provides tools and query clauses that affect query 
optimization and advanced query analysis tools that let you understand 
why the optimizer makes the choices that it does.

Note  This chapter suggests workarounds for certain optimization 
problems. If you experience these types of problems, please call Sybase 
Technical Support. 

Specifying optimizer choices
Adaptive Server lets you specify these optimization choices by including 
commands in a query batch or in the text of the query:

• The order of tables in a join

• The number of tables evaluated at one time during join optimization

• The index used for a table access

• The I/O size

• The cache strategy

• The degree of parallelism

In a few cases, the optimizer fails to choose the best plan. In some of these 
cases, the plan it chooses is only slightly more expensive than the “best” 
plan, so you need to weigh the cost of maintaining forced options against 
the slower performance of a less than optimal plan.



CHAPTER 18    Advanced Optimizing Tools

407

The commands to specify join order, index, I/O size, or cache strategy, 
coupled with the query-reporting commands like statistics io and showplan, 
can help you determine why the optimizer makes its choices.

 Warning! Use the options described in this chapter with caution. The 
forced query plans may be inappropriate in some situations and may cause 
very poor performance. If you include these options in your applications, 
check query plans, I/O statistics, and other performance data regularly.

These options are generally intended for use as tools for tuning and 
experimentation, not as long-term solutions to optimization problems.

Specifying table order in joins
Adaptive Server optimizes join orders to minimize I/O. In most cases, the 
order that the optimizer chooses does not match the order of the from 
clauses in your select command. To force Adaptive Server to access tables 
in the order they are listed, use: 

set forceplan [on|off]

The optimizer still chooses the best access method for each table. If you 
use forceplan, specifying a join order, the optimizer may use different 
indexes on tables than it would with a different table order, or it may not 
be able to use existing indexes.

You might use this command as a debugging aid if other query analysis 
tools lead you to suspect that the optimizer is not choosing the best join 
order. Always verify that the order you are forcing reduces I/O and logical 
reads by using set statistics io on and comparing I/O with and without 
forceplan.

If you use forceplan, your routine performance maintenance checks should 
include verifying that the queries and procedures that use it still require the 
option to improve performance.

You can include forceplan in the text of stored procedures.

set forceplan forces only join order, and not join type. There is no 
command for specifying the join type; you can disable merge joins at the 
server or session level. 



Specifying table order in joins 

408  

See “Enabling and disabling merge joins” on page 417 for more 
information.

Risks of using forceplan
Forcing join order has these risks:

• Misuse can lead to extremely expensive queries. Always test the 
query thoroughly with statistics io, and with and without forceplan.

• It requires maintenance. You must regularly check queries and stored 
procedures that include forceplan. Also, future versions of Adaptive 
Server may eliminate the problems that lead you to incorporate index 
forcing, so you should check all queries using forced query plans each 
time a new version is installed.

Things to try before using forceplan
Before you use forceplan:

• Check showplan output to determine whether index keys are used as 
expected.

• Use dbcc traceon(302) to look for other optimization problems.

• Run update statistics on the index. 

• Use update statistics to add statistics for search arguments on 
unindexed search clauses in the query, especially for search 
arguments that match minor keys in compound indexes.

• If the query joins more than four tables, use set table count to see if it 
results in an improved join order. 

See “Specifying the number of tables considered by the optimizer” 
on page 409.



CHAPTER 18    Advanced Optimizing Tools

409

Specifying the number of tables considered by the 
optimizer

Adaptive Server optimizes joins by considering permutations of two to 
four tables at a time, as described in “Costing and optimizing joins” on 
page 471. If you suspect that an inefficient join order is being chosen for 
a join query, you can use the set table count option to increase the number 
of tables that are considered at the same time. The syntax is: 

set table count int_value

Valid values are 0 though 8; 0 restores the default behavior. 

For example, to specify 4-at-a-time optimization, use:

set table count 4

dbcc traceon(310) reports the number of tables considered at a time. See 
“dbcc traceon(310) and final query plan costs” on page 891 for more 
information.

As you decrease the value, you reduce the chance that the optimizer will 
consider all the possible join orders. Increasing the number of tables 
considered at one time during join ordering can greatly increase the time 
it takes to optimize a query.

Since the time it takes to optimize the query is increased with each 
additional table, the set table count option is most useful when the 
execution savings from improved join order outweighs the extra 
optimizing time. Some examples are:

• If you think that a more optimal join order can shorten total query 
optimization and execution time, especially for stored procedures that 
you expect to be executed many times once a plan is in the procedure 
cache 

• When saving abstract plans for later use

Use statistics time to check parse and compile time and statistics io to verify 
that the improved join order is reducing physical and logical I/O. 

If increasing the table count produces an improvement in join 
optimization, but increases the CPU time unacceptably, rewrite the from 
clause in the query, specifying the tables in the join order indicated by 
showplan output, and use forceplan to run the query. Your routine 
performance maintenance checks should include verifying that the join 
order you are forcing still improves performance.



Specifying an index for a query 

410  

Specifying an index for a query
You can specify the index to use for a query using the (index index_name) 
clause in select, update, and delete statements. You can also force a query 
to perform a table scan by specifying the table name. The syntax is: 

select select_list
from table_name [correlation_name]

(index {index_name | table_name } )
[, table_name ...]

where ...

delete table_name 
from table_name [correlation_name]
(index {index_name | table_name }) ... 

update table_name set col_name = value
from table_name [correlation_name]
(index {index_name | table_name})...

For example:

select pub_name, title
    from publishers p, titles t (index date_type)
    where p.pub_id = t.pub_id
    and type = "business"
    and pubdate > "1/1/93"

Specifying an index in a query can be helpful when you suspect that the 
optimizer is choosing a suboptimal query plan. When you use this option:

• Always check statistics io for the query to see whether the index you 
choose requires less I/O than the optimizer’s choice. 

• Ttest a full range of valid values for the query clauses, especially if 
you are tuning queries:

• Tuning queries on tables that have skewed data distribution

• Performing range queries, since the access methods for these 
queries are sensitive to the size of the range



CHAPTER 18    Advanced Optimizing Tools

411

Use this option only after testing to be certain that the query performs 
better with the specified index option. Once you include an index 
specification in a query, you should check regularly to be sure that the 
resulting plan is still better than other choices made by the optimizer.

Note  If a nonclustered index has the same name as the table, specifying a 
table name causes the nonclustered index to be used. You can force a table 
scan using select select_list from tablename (0).

Risks
Specifying indexes has these risks:

• Changes in the distribution of data could make the forced index less 
efficient than other choices.

• Dropping the index means that all queries and procedures that specify 
the index print an informational message indicating that the index 
does not exist. The query is optimized using the best alternative 
access method.

• Maintenance increases, since all queries using this option need to be 
checked periodically. Also, future versions of Adaptive Server may 
eliminate the problems that lead you to incorporate index forcing, so 
you should check all queries using forced indexes each time you 
install a new version.

Things to try before specifying an index
Before specifying an index in queries:

• Check showplan output for the “Keys are” message to be sure that the 
index keys are being used as expected.

• Use dbcc traceon(302) to look for other optimization problems.

• Run update statistics on the index.



Specifying I/O size in a query 

412  

• If the index is a composite index, run update statistics on the minor 
keys in the index, if they are used as search arguments. This can 
greatly improve optimizer cost estimates. Creating statistics for other 
columns frequently used for search clauses can also improve 
estimates.

Specifying I/O size in a query
If your Adaptive Server is configured for large I/Os in the default data 
cache or in named data caches, the optimizer can decide to use large I/O 
for:

• Queries that scan entire tables

• Range queries using clustered indexes, such as queries using >, <, > x 
and < y, between, and like “charstring %”

• Queries that scan a large number of index leaf pages

If the cache used by the table or index is configured for 16K I/O, a single 
I/O can read up to eight pages simultaneously. Each named data cache can 
have several pools, each with a different I/O size. Specifying the I/O size 
in a query causes the I/O for that query to take place in the pool that is 
configured for that size. See the System Administration Guide for 
information on configuring named data caches.

To specify an I/O size that is different from the one chosen by the 
optimizer, add the prefetch specification to the index clause of a select, 
delete, or update statement. The syntax is: 

select select_list
from table_name

( [index {index_name | table_name} ]
prefetch size)

[, table_name ...]
where ...

 

delete table_name from table_name 
( [index {index_name | table_name} ]

prefetch size)
... 

 



CHAPTER 18    Advanced Optimizing Tools

413

update table_name set col_name = value 
from table_name 

( [index {index_name | table_name} ]
prefetch size)

...

Valid values for size are 2, 4, 8, and 16. If no pool of the specified size 
exists in the data cache used by the object, the optimizer chooses the best 
available size.

If there is a clustered index on au_lname, this query performs 16K I/O 
while it scans the data pages:

select * 
from authors (index au_names prefetch 16)
    where au_lname like "Sm%"

If a query normally performs large I/O, and you want to check its I/O 
performance with 2K I/O, you can specify a size of 2K:

select type, avg(price)
    from titles (index type_price prefetch 2)
    group by type

Index type and large I/O
When you specify an I/O size with prefetch, the specification can affect 
both the data pages and the leaf-level index pages. Table 18-1 shows the 
effects.

Table 18-1: Access methods and prefetching

showplan reports the I/O size used for both data and leaf-level pages. 

See “I/O Size Messages” on page 812 for more information.

Access method Large I/O performed on

Table scan Data pages

Clustered index Data pages only, for allpages-locked 
tables

Data pages and leaf-level index pages for 
data-only-locked tables

Nonclustered index Data pages and leaf pages of 
nonclustered index



Specifying I/O size in a query 

414  

When prefetch specification is not followed
In most cases, when you specify an I/O size in a query, the optimizer 
incorporates the I/O size into the query’s plan. However, there are times 
when the specification cannot be followed, either for the query as a whole 
or for a single, large I/O request.

Large I/O cannot be used for the query if:

• The cache is not configured for I/O of the specified size. The 
optimizer substitutes the best size available.

• sp_cachestrategy has been used to disable large I/O for the table or 
index.

Large I/O cannot be used for a single buffer if 

• Any of the pages included in that I/O request are in another pool in the 
cache.

• The page is on the first extent in an allocation unit. This extent holds 
the allocation page for the allocation unit, and only seven data pages.

• No buffers are available in the pool for the requested I/O size.

Whenever a large I/O cannot be performed, Adaptive Server performs 2K 
I/O on the specific page or pages in the extent that are needed by the query.

To determine whether the prefetch specification is followed, use showplan 
to display the query plan and statistics io to see the results on I/O for the 
query. sp_sysmon reports on the large I/Os requested and denied for each 
cache. 

See “Data cache management” on page 973.

set prefetch on
By default, a query uses large I/O whenever a large I/O pool is configured 
and the optimizer determines that large I/O would reduce the query cost. 
To disable large I/O during a session, use:

set prefetch off

To reenable large I/O, use:

set prefetch on

If large I/O is turned off for an object using sp_cachestrategy, set prefetch 
on does not override that setting.



CHAPTER 18    Advanced Optimizing Tools

415

If large I/O is turned off for a session using set prefetch off, you cannot 
override the setting by specifying a prefetch size as part of a select, delete, 
or insert statement.

The set prefetch command takes effect in the same batch in which it is run, 
so you can include it in a stored procedure to affect the execution of the 
queries in the procedure.

Specifying the cache strategy
For queries that scan a table’s data pages or the leaf level of a nonclustered 
index (covered queries), the Adaptive Server optimizer chooses one of two 
cache replacement strategies: the fetch-and-discard (MRU) strategy or the 
LRU strategy. 

See “Overview of cache strategies” on page 162 for more information 
about these strategies.

The optimizer may choose the fetch-and-discard (MRU) strategy for:

• Any query that performs table scans

• A range query that uses a clustered index

• A covered query that scans the leaf level of a nonclustered index

• An inner table in a nested-loop join, if the inner table is larger than the 
cache

• The outer table of a nested-loop join, since it needs to be read only 
once

• Both tables in a merge join

You can affect the cache strategy for objects:

• By specifying lru or mru in a select, update, or delete statement

• By using sp_cachestrategy to disable or reenable mru strategy

If you specify MRU strategy, and a page is already in the data cache, the 
page is placed at the MRU end of the cache, rather than at the wash marker.

Specifying the cache strategy affects only data pages and the leaf pages of 
indexes. Root and intermediate pages always use the LRU strategy.



Controlling large I/O and cache strategies 

416  

In select, delete, and update statements
You can use lru or mru (fetch-and-discard) in a select, delete, or update 
command to specify the I/O size for the query: 

select select_list
from table_name

(index index_name prefetch size [lru|mru])
[, table_name ...]

where ...

 

delete table_name from table_name (index index_name 
prefetch size [lru|mru]) ... 

 

update table_name set col_name = value
from table_name (index index_name

prefetch size [lru|mru]) ...

This query adds the LRU replacement strategy to the 16K I/O 
specification:

select au_lname, au_fname, phone
    from authors (index au_names prefetch 16 lru)

For more information about specifying a prefetch size, see “Specifying I/O 
size in a query” on page 412.

Controlling large I/O and cache strategies
Status bits in the sysindexes table identify whether a table or an index 
should be considered for large I/O prefetch or for MRU replacement 
strategy. By default, both are enabled. To disable or reenable these 
strategies, use sp_cachestrategy. The syntax is: 

sp_cachestrategy dbname , [ownername.]tablename 
[, indexname | "text only" | "table only" 
[, { prefetch | mru }, { "on" | "off"}]]

This command turns off the large I/O prefetch strategy for the 
au_name_index of the authors table:

sp_cachestrategy pubtune, 
authors, au_name_index, prefetch, "off"

This command reenables MRU replacement strategy for the titles table:



CHAPTER 18    Advanced Optimizing Tools

417

sp_cachestrategy pubtune, 
titles, "table only", mru, "on"

Only a System Administrator or the object owner can change or view the 
cache strategy status of an object.

Getting information on cache strategies
To see the cache strategy that is in effect for a given object, execute 
sp_cachestrategy, with the database and object name:

sp_cachestrategy pubtune, titles
object name      index name       large IO MRU     
---------------- ---------------- -------- --------
titles           NULL             ON       ON 

showplan output shows the cache strategy used for each object, including 
worktables.

Enabling and disabling merge joins
By default, merge joins are not enabled at the server level. When merge 
joins are disabled, the server only costs nested-loop joins, and merge joins 
are not considered. To enable merge joins server-wide, set enable sort-
merge joins and JTC to 1. This also enables join transitive closure.

The command set sort_merge on overrides the server level to allow use of 
merge joins in a session or stored procedure.

To enable merge joins, use:

set sort_merge on

To disable merge joins, use:

set sort_merge off

For information on configuring merge joins server-wide see the System 
Administration Guide.



Enabling and disabling join transitive closure 

418  

Enabling and disabling join transitive closure
By default, join transitive closure is not enabled at the server level, since 
it can increase optimization time. You can enable join transitive closure at 
a session level with set jtc on. The session-level command overrides the 
server-level setting for the enable sort-merge joins and JTC configuration 
parameter. 

For queries that execute quickly, even when several tables are involved, 
join transitive closure may increase optimization time with little 
improvement in execution cost. For example, with join transitive closure 
applied to this query, the number of possible joins is multiplied for each 
added table:

select * from t1, t2, t3, t4, ... tN
where t1.c1 = t2.c1
and t1.c1 = t3.c1
and t1.c1 = t4.c1
...
and t1.c1 = tN.c1

For joins on very large tables, however, the additional optimization time 
involved in costing the join orders added by join transitive closure may 
result in a join order that greatly improves the response time.

You can use set statistics time to see how long it takes to optimize the 
query. If running queries with set jtc on greatly increases optimization 
time, but also improves query execution by choosing a better join order, 
check the showplan or dbcc traceon(302, 310) output. Explicitly add the 
useful join orders to the query text. You can run the query without join 
transitive closure, and get the improved execution time, without the 
increased optimization time of examining all possible join orders 
generated by join transitive closure.

You can also enable join transitive closure and save abstract plans for 
queries that benefit. If you then execute those queries with loading from 
the saved plans enabled, the saved execution plan is used to optimize the 
query, making optimization time extremely short. 

See Chapter 28, “Introduction to Abstract Plans,” for more information on 
using abstract plans.

For information on configuring join transitive closure server-wide see the 
System Administration Guide.



CHAPTER 18    Advanced Optimizing Tools

419

Suggesting a degree of parallelism for a query
The parallel and degree_of_parallelism extensions to the from clause of a 
select command allow users to restrict the number of worker processes 
used in a scan.

For a parallel partition scan to be performed, the degree_of_parallelism 
must be equal to or greater than the number of partitions. For a parallel 
index scan, specify any value for the degree_of_parallelism. 

The syntax for the select statement is: 

select...
[from {tablename} 

[(index index_name 
[parallel [degree_of_parallelism | 1]]
[prefetch size] [lru|mru])],

{tablename} [([index_name] 
[parallel [degree_of_parallelism | 1] 

[prefetch size] [lru|mru])] ...

Table 18-2 shows how to combine the index and parallel keywords to 
obtain serial or parallel scans. 

Table 18-2: Optimizer hints for serial and parallel execution

When you specify the parallel degree for a table in a merge join, it affects 
the degree of parallelism used for both the scan of the table and the merge 
join.

You cannot use the parallel option if you have disabled parallel processing 
either at the session level with the set parallel_degree 1 command or at the 
server level with the parallel degree configuration parameter. The parallel 
option cannot override these settings.

If you specify a degree_of_parallelism that is greater than the maximum 
configured degree of parallelism, Adaptive Server ignores the hint.

To specify this type of scan: Use this syntax:

Parallel partition scan (index tablename   parallel N)

Parallel index scan (index index_name   parallel N)

Serial table scan (index tablename parallel 1)

Serial index scan (index index_name   parallel 1)

Parallel, with the choice of table or 
index scan left to the optimizer

(parallel N)

Serial, with the choice of table or 
index scan left to the optimizer

(parallel 1)



Suggesting a degree of parallelism for a query 

420  

The optimizer ignores hints that specify a parallel degree if any of the 
following conditions is true:

• The from clause is used in the definition of a cursor.

• parallel is used in the from clause of an inner query block of a 
subquery, and the optimizer does not move the table to the outermost 
query block during subquery flattening.

• The table is a view, a system table, or a virtual table.

• The table is the inner table of an outer join.

• The query specifies exists, min, or max on the table.

• The value for the max scan parallel degree configuration parameter is 
set to 1.

• An unpartitioned clustered index is specified or is the only parallel 
option.

• A nonclustered index is covered.

• The query is processed using the OR strategy. 

For an explanation of the OR strategy, see “Access Methods and 
Costing for or and in Clauses” on page 451.

• The select statement is used for an update or insert.

Query level parallel clause examples
To specify the degree of parallelism for a single query, include parallel after 
the table name. This example executes in serial:

select * from titles (parallel 1)

This example specifies the index to be used in the query, and sets the 
degree of parallelism to 5:

select * from titles 
    (index title_id_clix parallel 5)
where ...

To force a table scan, use the table name instead of the index name.



CHAPTER 18    Advanced Optimizing Tools

421

Concurrency optimization for small tables
For data-only-locked tables of 15 pages or fewer, Adaptive Server does not 
consider a table scan if there is a useful index on the table. Instead, it 
always chooses the cheapest index that matches any search argument that 
can be optimized in the query. The locking required for an index scan 
provides higher concurrency and reduces the chance of deadlocks, 
although slightly more I/O may be required than for a table scan.

If concurrency on small tables is not an issue, and you want to optimize 
the I/O instead, you can disable this optimization with sp_chgattribute. 
This command turns off concurrency optimization for a table:

sp_chgattribute tiny_lookup_table,
    "concurrency_opt_threshold", 0

With concurrency optimization disabled, the optimizer can choose table 
scans when they require fewer I/Os. 

You can also increase the concurrency optimization threshold for a table. 
This command sets the concurrency optimization threshold for a table to 
30 pages:

sp_chgattribute lookup_table, 
    "concurrency_opt_threshold", 30

The maximum value for the concurrency optimization threshold is 32,767. 
Setting the value to -1 enforces concurrency optimization for a table of any 
size. It may be useful in cases where a table scan is chosen over indexed 
access, and the resulting locking results in increased contention or 
deadlocks.

The current setting is stored in systabstats.conopt_thld and is printed as 
part of optdiag output.

Changing locking scheme
Concurrency optimization affects only data-only-locked tables. Table 18-
3 shows the effect of changing the locking scheme.

Table 18-3: Effects of alter table on concurrency optimization 
settings

Changing locking scheme from Effect on stored value

Allpages to data-only Set to 15, the default

Data-only to allpages Set to 0



Concurrency optimization for small tables 

422  

One data-only scheme to another Configured value retained

Changing locking scheme from Effect on stored value



423

C H A P T E R  1 9  Query Tuning Tools

This chapter provides a guide to the tools that can help you tune your 
queries.

The tools mentioned in this chapter are described in more detail in the 
chapters that follow.

Overview
Adaptive Server provides the following diagnostic and informational 
tools to help you understand query optimization and improve the 
performance of your queries:

• A choice of tools to check or estimate the size of tables and indexes. 
These tools are described in Chapter 15, “Determining Sizes of 
Tables and Indexes.”

• set statistics io on displays the number of logical and physical reads 
and writes required for each table in a query. If resource limits are 
enabled, it also displays the total actual I/O cost. set statistics io is 
described in Chapter 34, “Using the set statistics Commands.”

• set showplan on displays the steps performed for each query in a 
batch. It is often used with set noexec on, especially for queries that 
return large numbers of rows. 

See Chapter 35, “Using set showplan.”

• set statistics subquerycache on displays the number of cache hits and 
misses and the number of rows in the cache for each subquery. 

See “Subquery results caching” on page 502 for examples.

Topic Page
Overview 423

How tools may interact 425

How tools relate to query processing 426



Overview 

424  

• set statistics time on displays the time it takes to parse and compile 
each command. 

See “Checking compile and execute time” on page 762 for more 
information.

• dbcc traceon (302) and dbcc traceon(310) provide additional 
information about why particular plans were chosen and is often used 
when the optimizer chooses a plan that seems incorrect. 

See Chapter 37, “Tuning with dbcc traceon.”

• The optdiag utility command displays statistics for tables, indexes, 
and columns. 

See Chapter 36, “Statistics Tables and Displaying Statistics with 
optdiag.”

• Chapter 18, “Advanced Optimizing Tools,” explains tools you can 
use to enforce index choice, join order, and other query optimization 
choices. These tools include:

• set forceplan – forces the query to use the tables in the order 
specified in the from clause.

• set table count – increases the number of tables that the optimizer 
considers at one time while determining join order.

• select, delete, update clauses with 
(index...prefetch...mru_lru...parallel) –specifies the index, I/O size, 
or cache strategy to use for the query.

• set prefetch –toggles prefetch for query tuning experimentation.

• set sort_merge – disallows sort-merge joins.

• set parallel_degree – specifies the degree of parallelism for a 
query.

• sp_cachestrategy – sets status bits to enable or disable prefetch 
and fetch-and-discard cache strategies.



CHAPTER 19    Query Tuning Tools

425

How tools may interact
showplan, statistics io, and other commands produce their output while 
stored procedures are being run. The system procedures that you might use 
for checking table structure or indexes as you test optimization strategies 
can produce voluminous output when diagnostic information is being 
printed. You may want to have hard copies of your table schemas and 
index information, or you can use separate windows for running system 
procedures such as sp_helpindex. 

For lengthy queries and batches, you may want the save showplan and 
statistics io output in files. You can do so by using “echo input” flag to isql. 
The syntax is: 

isql -P password -e -i input_file -o outputfile

Using showplan and noexec together
showplan is often used in conjunction with set noexec on, which prevents 
SQL statements from being executed. Issue showplan, or any other set 
commands, before you issue the noexec command. Once you issue set 
noexec on, the only command that Adaptive Server executes is set noexec 
off. This example shows the correct order:

set showplan on
set noexec on
go
select au_lname, au_fname
    from   authors
    where  au_id = "A137406537"
go

noexec and statistics io
While showplan and noexec make useful companions, noexec stops all the 
output of statistics io. The statistics io command reports actual disk I/O; 
while noexec is in effect, no I/O takes place, so the reports are not printed.



How tools relate to query processing 

426  

How tools relate to query processing
Many of the tools, for example, the set commands, affect the decisions 
made by the optimizer. showplan and dbcc traceon(302, 310) show you 
optimizer decision-making. dbcc traceon(302,310) shows intermediate 
information as analysis is performed, with dbcc traceon(310) printing the 
final plan statistics. showplan shows the final decision on access methods 
and join order.

statistics io and statistics time provide information about how the query was 
executed: statistics time measures time from the parse step until the query 
completes. statistics io prints actual I/O performed during query execution. 

noexec allows you to obtain information such as showplan or dbcc 
traceon(302,310) output without actually executing the query. 



427

C H A P T E R  2 0 Access Methods and Query 
Costing for Single Tables

This chapter introduces the methods that Adaptive Server uses to access 
rows in tables. It examines various types of queries on single tables, and 
describes the access methods that can be used, and the associated costs. 

Chapter 17, “Adaptive Server Optimizer,” explains how the optimizer 
uses search arguments and join clauses to estimate the number of rows that 
a query will return. This chapter looks at how the optimizer uses row 
estimates and other statistics to estimate the number of pages that must be 
read for the query, and how many logical and physical I/Os are required. 

This chapter looks at queries that affect a single table. 

For queries that involve more than one table, see Chapter 21, “Accessing 
Methods and Costing for Joins and Subqueries.”

For parallel queries, see Chapter 23, “Parallel Query Optimization.”

This chapter contains information about query processing that you can use 
in several ways as it:

• Provides a general overview of the access methods that Adaptive 
Server uses to process a variety of queries, including illustrations and 
sample queries. This information will help you understand how 
particular types of queries are executed and how you can improve 
query performance by adding indexes or statistics for columns used 
in the queries.

Topic Page
Table scan cost 429

From rows to pages 432

Evaluating the cost of index access 435

Costing for queries using order by 443

Access Methods and Costing for or and in Clauses 451

How aggregates are optimized 456

How update operations are performed 458



 

428  

• Provides a description of how the optimizer arrives at the logical and 
physical I/O estimates for the queries. These descriptions can help 
you understand whether the I/O use and response time are reasonable 
for a given query. These descriptions can be used with the following 
tuning tools:

• optdiag can be used to display the statistics about your tables, 
indexes, and column values. 

See Chapter 36, “Statistics Tables and Displaying Statistics with 
optdiag.”

• showplan displays the access method (table scan, index scan, type 
of OR strategy, and so forth) for a query. 

See Chapter 35, “Using set showplan.”

• statistics io displays the logical and physical I/O for each table in 
a query. 

• Provides detailed formulas, very close to the actual formulas used by 
Adaptive Server. Use these formulas are meant to be used in 
conjunction with the tuning tools:

• optdiag can be used to display the statistics that you need to apply 
the formulas. See Chapter 36, “Statistics Tables and Displaying 
Statistics with optdiag.”

• dbcc traceon(302) displays the sizes, densities, selectivities and 
cluster ratios used to produce logical I/O estimates, and dbcc 
traceon(310) displays the final query costing for each table, 
including the estimated physical I/O. See Chapter 37, “Tuning 
with dbcc traceon.”

In many cases, you will need to use these formulas only when you are 
debugging problem queries. You may need to discover why an or 
query performs a table scan, or why an index that you thought was 
useful is not being used by a query.

This chapter can also help you determine when to stop working to improve 
the performance of a particular query. If you know that it needs to read a 
certain number of index pages and data pages, and the number of I/Os 
cannot be reduced further by adding a covering index, you know that you 
have reached the optimum performance possible for query analysis and 
index selection. You might need to look at other issues, such as cache 
configuration, parallel query options, or object placement.



CHAPTER 20    Access Methods and Query Costing for Single Tables

429

Table scan cost
When a query requires a table scan, Adaptive Server reads each page of 
the table from disk into the data cache and checks the data values (if there 
is a where clause) and returns qualifying rows.

Table scans are performed:

• When no index exists on the columns used in the search clauses.

• When the optimizer determines that using the index is more expensive 
than performing a table scan. The optimizer may determine that it is 
cheaper to read the data pages directly than to read the index pages 
and then the data pages for each row that is to be returned. 

The cost of a table scan depends on the size of the table and the I/O size.

Cost of a scan on allpages-locked table
The I/O cost of a table scan on an allpages-locked table using 2K I/O is 
one physical I/O and one logical I/O for each page in the table:

Table scan cost = Number of pages * 18 
+ Number of pages * 2 

If the table uses a cache with large I/O, the number of physical I/Os is 
estimated by dividing the number of pages by the I/O size and using a 
factor that is based on the data page cluster ratio to estimate the number of 
large I/Os that need to be performed. Since large I/O cannot be performed 
on any data pages on the first extent in the allocation unit, each of those 
pages must be read with 2K I/O.

The logical I/O cost is one logical I/O for each page in the table. The 
formula is: 

Table scan cost = (pages /pages per IO) * Clustering adjust-
ment* 18+ Number of pages * 2



Table scan cost 

430  

See “How cluster ratios affect large I/O estimates” on page 433 for more 
information on cluster ratios.

Note  Adaptive Server does not track the number of pages in the first 
extent of an allocation unit for an allpages-locked table, so the optimizer 
does not include this slight additional I/O in its estimates.

Cost of a scan on a data-only-locked tables
Tables that use data-only locking do not have page chains like allpages-
locked tables. To perform a table scan on a data-only-locked table, 
Adaptive Server:

• Reads the OAM (object allocation map) page(s) for the table

• Uses the pointers on the OAM page to access the allocation pages 

• Uses the pointers on the allocation pages to locate the extents used by 
the table

• Performs either large I/O or 2K I/O on the pages in the extent

The total cost of a table scan on a data-only-locked table includes the 
logical and physical I/O for all pages in the table, plus the cost of logical 
and physical I/O for the OAM and allocation pages.

Figure 20-1 shows the pointers from OAM pages to allocation pages and 
from allocation pages to extents.



CHAPTER 20    Access Methods and Query Costing for Single Tables

431

Figure 20-1: Sequence of pointers for OAM scans

The formula for computing the cost of an OAM scan with 2K I/O is:

OAM Scan Cost = (OAM_alloc_pages + Num_pages) * 18
+ (OAM_alloc_pages + Num_pages)* 2

When large I/O can be used, the optimizer adds the cost of performing 2K 
I/O for the pages in the first extent of each allocation unit to the cost of 
performing 16K I/O on the pages in regular extents. The number of 
physical I/Os is the number of pages in the table, modified by a cluster 
adjustment that is based on the data page cluster ratio for the table. 

See “How cluster ratios affect large I/O estimates” on page 433 for more 
information on cluster ratios.

27 2824 25 26 29 30 31

750 1 2 3 4 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

248 249 250 251 252 253 254 255

283

511

279

..

274

256 257 258 259 260 261 262 263

264 265 266 267 268 269 270 271

272 273 275 276 277 278

280 281 282 284 285 286 287

.
504 505 506 507 508 509 510

Pages used by 
object

Other pages

Allocation page

...

OAM Page
0
256



From rows to pages 

432  

Logical I/O costs are one I/O per page in the table, plus the logical I/O cost 
of reading the OAM and allocation pages. The formula for computing the 
cost of an OAM scan with large I/O is:

 OAM Scan Cost = OAM_alloc_pages * 18 
+ Pages in 1st extent * 18
+ Pages in other extents / Pages per IO 

* Cluster adjustment * 18
+ OAM_alloc_pages * 2
+ Pages in table * 2

optdiag reports the number of pages for each of the needed values.

When a data-only-locked table contains forwarded rows, the I/O cost of 
reading the forwarded rows is added to the logical and physical I/O for a 
table scan. 

See “Allpages-locked heap tables” on page 156 for more information on 
row forwarding.

From rows to pages
When the optimizer costs the use of an index to resolve a query, it first 
estimates the number of qualifying rows, and then estimates the number of 
pages that need to be read.

The examples in Chapter 17, “Adaptive Server Optimizer,” show how 
Adaptive Server estimates the number of rows for a search argument or 
join using statistics. Once the number of rows has been estimated, the 
optimizer estimates the number of data pages and index leaf pages that 
need to be read:

• For tables, the optimizer divides the number of rows in the table by 
the number of pages to determine the average number of rows per data 
page.

• To estimate the average number of rows per page on the leaf level of 
an index, the optimizer divides the number of rows in the table by the 
number of leaf pages in the index.



CHAPTER 20    Access Methods and Query Costing for Single Tables

433

After the number of pages is estimated, data page and index page cluster 
ratios are used to adjust the page estimates for queries using large I/O, and 
data row cluster ratios are used to estimate the number of data pages for 
queries using noncovering indexes.

How cluster ratios affect large I/O estimates
When clustering is high, large I/O is effective. As the cluster ratios decline, 
effectiveness of large I/O drops rapidly. To refine I/O estimates, the 
optimizer uses a set of cluster ratios:

• For a table, the data page cluster ratio measures the packing and 
sequencing of pages on extents.

• For an index, the data page cluster ratio measures the effectiveness of 
large I/O for accessing the table using this index.

• The index page cluster ratio measures the packing and sequencing of 
leaf-level index pages on index extents.

Note  The data row cluster ratio, another cluster ratio used by query 
optimization, is used to cost the number of data pages that need to be 
accessed during scans using a particular index. It is not used in large 
I/O costing.

optdiag displays the cluster ratios for tables and indexes. 

Data page cluster ratio

The data page cluster ratio for a table measures the effectiveness of large 
I/O for table scans. Its use is slightly different depending on the locking 
scheme.



From rows to pages 

434  

On allpages-locked tables

For allpages-locked tables, a table scan or a scan that uses a clustered 
index to scan many pages follows the next-page pointers on each data 
page. Immediately after the clustered index is created, the data page 
cluster ratio is 1.0, and pages are ordered by page number on the extents. 
However, after updates and page splits, the page chain can be fragmented 
across the page chain, as shown in Figure 20-2, where page 10 has been 
split; the page pointers point from page 10 to page 26 in another extent, 
then to page 11. 

Figure 20-2: Page chain crossing extents in an allpages-locked 
table

The data page cluster ratio for an allpages-locked table measures the 
effectiveness of large I/O for both table scans and clustered index scans.

On data-only-locked tables

For data-only-locked tables, the data page cluster ratio measures how well 
the pages are packed on the extents. A cluster ratio of 1.0 indicates 
complete packing of extents, with the page chain ordered. If extents 
contain unused pages, the data page cluster ratio is less than 1.0. 

optdiag reports two data page cluster ratios for data-only-locked tables 
with clustered indexes. The value reported for the table is used for table 
scans. The value reported for the clustered index is used for scans using 
the index.

27 2824 25 26 29 30 31

750 1 2 3 4 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

248 249 250 251 252 253 254 255

OAM page

Pages used by object

Other pages

Allocation page

...



CHAPTER 20    Access Methods and Query Costing for Single Tables

435

Index page cluster ratio

The index page cluster ratio measures the packing and sequencing of index 
leaf pages on extents for nonclustered indexes and clustered indexes on 
data-only-locked tables. For queries that need to read more than one leaf 
page, the leaf level of the index is scanned using next-page or previous-
page pointers. If many leaf rows need to be read, 16K I/O can be used on 
the leaf pages to read one extent at a time. The index page cluster ratio 
measures fragmentation of the page chain for the leaf level of the index.

Evaluating the cost of index access
When a query has search arguments on useful indexes, the query accesses 
only the index pages and data pages that contain rows that match the 
search arguments. Adaptive Server compares the total cost of index and 
data page I/O to the cost of performing a table scan, and uses the cheapest 
method.

Query that returns a single row
A query that returns a single row using an index performs one I/O for each 
index level plus one read for the data page. The optimizer estimates the 
total cost as one physical I/O and one logical I/O for each index page and 
the data page. The cost for a point query is:

Point query cost   = (Number of index levels + data page) * 18
+ (Number of index levels + data page) * 2

optdiag output displays the number of index levels.

The root page and intermediate pages of frequently used indexes are often 
found in cache. In that case, actual physical I/O is reduced by one or two 
reads.

Query that returns many rows
A query that returns many rows may be optimized very differently, 
depending on the type of index and the number of rows to be returned. 
Some examples are:



Evaluating the cost of index access 

436  

• Queries with search arguments that match many values, such as:

select title, price
from titles
where pub_id = "P099"

• Range queries, such as:

select title, price
from titles
where price between $20 and $50

For queries that return a large number of rows using the leading key of the 
index, clustered indexes and covering nonclustered indexes are very 
efficient:

• If the table uses allpages locking, and has a clustered index on the 
search arguments, the index is used to position the scan on the first 
qualifying row. The remaining qualifying rows are read by scanning 
forward on the data pages.

• If a nonclustered index or the clustered index on a data-only-locked 
table covers the query, the index is used to position the scan at the first 
qualifying row on the index leaf page, and the remaining qualifying 
rows are read by scanning forward on the leaf pages of the index.

If the index does not cover the query, using a clustered index on a data-
only-locked table or a nonclustered index requires accessing the data page 
for each index row that matches the search arguments on the index. The 
matching rows may be scattered across many data pages, or they could be 
located on a very small number of pages, particularly if the index is a 
clustered index on a data-only-locked table. The optimizer uses data row 
cluster ratios to estimate how many physical and logical I/Os are required 
to read all of the qualifying data pages.

Range queries using clustered indexes (allpages locking)

To estimate the number of physical I/Os required for a range query using 
a clustered index on an allpages-locked table, the optimizer adds the 
physical and logical I/O for each index level and the physical and logical 
I/O of reading the needed data pages. Since data pages are read in order 
following the page chain, the cluster adjustment helps estimate the 
effectiveness of large I/O. The formula is:

Data pages = Number of qualified rows / Data rows per page



CHAPTER 20    Access Methods and Query Costing for Single Tables

437

Range query cost = Number of index levels * 18
+ Data pages/pages per IO * Cluster adjustment * 18
+ Number of index levels * 2
+ Data pages * 2

If a query returns 500 rows, and the table has 10 rows per page, the query 
needs to read 50 data pages, plus one index page for each index level. If 
the query uses 2K I/O, it requires 50 I/Os for the data pages. If the query 
uses 16K I/O, these 50 data pages require 7 I/Os.

The cluster adjustment uses the data page cluster ratio to refine the 
estimate of large I/O for the table, based on how fragmented the data page 
storage has become on the table’s extents.

Figure 20-3 shows how a range query using a clustered index positions the 
search on the first matching row on the data pages. The next-page pointers 
are used to scan forward on the data pages until a nonmatching row is 
encountered. 



Evaluating the cost of index access 

438  

Figure 20-3: Range query on the clustered index of an 
allpages-locked table

Range queries with covering indexes
Range queries using covering indexes perform very well because:

• The index is used to position the search at the first qualifying row on 
the index leaf level.

• Each index page contains more rows than corresponding data rows, so 
fewer pages need to be read. 

Page 1144
Green
Greene
Highland
Hopper

Page 1133
Greane
Greaves
Greco

Page 1132
Bennet
Chan
Dull
Edwards

Page 1127
Hunter
Jenkins

Page 1007
Bennet 1132
Greane 1133
Green 1144
Hunter 1127

Page 1009
Karsen 1009

Root page Data pages Intermediate

Key           Pointer

Key           Pointer

select fname, lname, id
from employees
where lname between "Greaves"
and "Highland"
Clustered index on lname

Page 1001
Bennet 1007
Karsen 1009
Smith 1062



CHAPTER 20    Access Methods and Query Costing for Single Tables

439

• Index pages tend to remain in cache longer than data pages, so fewer 
physical I/Os are needed.

• If the cache used by the index is configured for large I/O, up to 8 leaf-
level pages can be read per I/O.

• The data pages do not have to be accessed.

Both nonclustered indexes and clustered indexes on data-only-locked 
tables have a leaf level above the data level, so they can provide index 
covering. 

The cost of using a covering index is determined by: 

• The number of non-leaf index levels 

• The number of rows that the query returns

• The number of rows per page on the leaf level of the index 

• The number of leaf pages read per I/O

• The index page cluster ratio, used to adjust large I/O estimates when 
the index pages are not stored consecutively on the extents

This formula shows the costs:

Leaf pages = Number of qualified rows / Leaf level rows per page

Covered scan cost =Number of index levels * 18
+(Leaf pages /Pages per IO) * Cluster adjustment * 18
+Number of index levels * 2
+Leaf pages * 2

For example, if a query needs to read 1,200 leaf pages, and there are 40 
rows per leaf-level page, the query needs to read 30 leaf-level pages. If 
large I/O can be used, this requires 4 I/Os. If inserts have caused page 
splits on the index leaf-level, the cluster adjustment increases the 
estimated number of large I/Os.

Range queries with noncovering indexes
When a nonclustered index or a clustered index on a data-only-locked 
table does not cover the query, Adaptive Server:

• Uses the index to locate the first qualifying row at the leaf level of the 
nonclustered index



Evaluating the cost of index access 

440  

• Follows the pointer to the data page for that index, and reads the page

• Finds the next row on the index page, and locates its data page, and 
continues this process until all matching keys have been used

For each subsequent key, the data row could be on the same page as the 
row for the previous key, or the data row may be on a different page in the 
table. The clustering of key values for each index is measured by a value 
called the data row cluster ratio. The data row cluster ratio is applied to 
estimate the number of logical and physical I/Os.

When the data row cluster ratio is 1.0, clustering is very high. High cluster 
ratios are always seen immediately after creating a clustered index; cluster 
ratios are 1.00000 or .999997, for example. Rows on the data pages are 
stored the same order as the rows in the index. The number of logical and 
physical I/Os needed for the data pages is (basically) the number of rows 
to be returned, divided by the number of rows per page. For a table with 
10 rows per page, a query that needs to return 500 rows needs to read 50 
pages if the data row cluster ratio is 1.

When the data row cluster ratio is extremely low, the data rows are 
scattered on data pages with no relationship to the ordering of the keys. 
Nonclustered indexes often have low data row cluster ratios, since there is 
no relationship between the ordering of the index keys and the ordering of 
the data rows on data pages. When the data row cluster ratio is 0, or close 
to 0, the number of physical and logical I/Os required could be as much as 
1 data page I/O for each row to be returned. A query that needs to return 
500 rows needs to read 500 pages, or nearly 500 pages, if the data row 
cluster ratio is near 0 and the rows are widely scattered on the data pages. 
In a huge table, this still provides good performance, but in a table with 
less than 500 pages, the optimizer chooses the cheaper alternative – a table 
scan. 

The size of the data cache is also used in calculating the physical I/O. If 
the data row cluster ratio is very low, and the cache is small, pages may be 
flushed from cache before they can be reused. If the cache is large, the 
optimizer estimates that some pages will be found in cache.



CHAPTER 20    Access Methods and Query Costing for Single Tables

441

Result-set size and index use

A range query that returns a small number of rows performs well with the 
index, however, range queries that return a large number of rows may not 
use the index—it may be more expensive to perform the logical and 
physical I/O for a large number of index pages plus a large number of data 
pages. The lower the data row cluster ratio, the more expensive it is to use 
the index.

At the leaf level of a nonclustered index or a clustered index on a data-
only-locked table, the keys are stored sequentially. For a search argument 
on a value that matches 100 rows, the rows on the index leaf level fit on 
perhaps one or two index pages. The actual data rows might all be on 
different data pages. The following queries show how different data row 
cluster ratios affect I/O estimates. The authors table uses datarows locking, 
and has these indexes:

• A clustered index on au_lname

• A nonclustered index on state

Each of these queries returns about 100 rows:

select au_lname, phone 
from authors 
where au_lname like "E%"
select au_id, au_lname, phone 
from authors 
where state = "NC"

The following table shows the data row cluster ratio for each index, and 
the optimizer’s estimate of the number of rows to be returned and the 
number of pages required. 

The basic information on the table is:

• The table has 262 pages. 

• There are 19 rows per data page in the table.

SARG on Data row cluster ratio Row estimate Page estimate Data I/O size

au_lname .999789 101 8 16K

state .232539 103 83 2K



Evaluating the cost of index access 

442  

While each of the queries has its search clauses in valid search-argument 
form, and each of the clauses matches an index, only the first query uses 
the index: for the other query, a table scan is cheaper than using the index. 
With 262 pages, the cost of the table scan is:

Closer look at the Search Argument costing

Looking more closely at the tables, cluster ratios, and search arguments 
explains why the table scan is chosen:

• The estimate for the clustered index on au_lname includes just 8 
physical I/Os:

• 6 I/Os (using 16K I/O) on the data pages, because the data row 
cluster ratio indicates very high clustering. 

• 2 I/Os for the index pages (there are 128 rows per leaf page); 16K 
I/O is also used for the index leaf pages.

• The query using the search argument on state has to read many more 
data pages, since the data row cluster ratio is low. The optimizer 
chooses 2K I/O on the data pages. 83 physical I/Os is more than 
double the physical I/O required for a table scan (using 16K I/O).

Table scan cost = (262 /8) = 37 * 18 =666 
+ 262 * 2 =524

____
1190



CHAPTER 20    Access Methods and Query Costing for Single Tables

443

Costing for noncovering index scans

The basic formula for estimating I/O for queries accessing the data 
through a noncovering index is:

Costing for forwarded rows

If a data-only-locked table has forwarded rows, the cost of the extra I/O 
for accessing forwarded rows is added for noncovered index scans. The 
cost is computed by multiplying the number of forwarded rows in the table 
and the percent of the rows from the table that to be returned by the query. 
The added cost is:

Costing for queries using order by
Queries that perform sorts for order by may create and sort, or they may be 
able to use the index to return rows by relying on the index ordering. For 
example, the optimizer chooses one of these access methods for a query 
with an order by clause:

• With no useful search arguments – use a table scan, followed by 
sorting the worktable.

Leaf pages = Number of qualified rows / Leaf level rows per page

Data pages = Number of qualifying rows * Data row cluster adjustment

Scan cost = Number of nonleaf index levels * 18
+ (Leaf pages / Pages per IO) * Data page cluster adjustment * 18
+ (Data pages / Pages per IO) * Data page cluster adjustment * 18
+ Number of nonleaf index levels * 18
+ Leaf pages * 2
+ Number of qualifying rows * Data row cluster adjustment * 2 

Forwarded row cost = % of rows returned * Number of forwarded rows in the table



Costing for queries using order by 

444  

• With selective search argument or join on an index that does not 
match the order by clause – use an index scan, followed by sorting the 
worktable.

• With a search argument or join on an index that matches the order by 
clause – an index scan using this index, with no worktable or sort.

Sorts are always required for result sets when the columns in the result set 
are a superset of the index keys. For example, if the index on authors 
includes au_fname and au_lname, and the order by clause also includes the 
au_id, the query requires a sort.

If there are search arguments on indexes that match the order by clause, 
and other search arguments on indexes that do not support the required 
ordering, the optimizer costs both access methods. If the worktable and 
sort is required, the cost of performing the I/O for these operations is added 
to the cost of the index scan. If an index is potentially useful to help avoid 
the sort, dbcc traceon(302) prints a message while the search or join 
argument costing takes place. 

See “Sort avert messages” on page 881 for more information.

Besides the availability of indexes, two major factors determine whether 
the index is considered:

• The order by clause must specify a prefix subset of the index keys.

• The order by clause and the index must have compatible 
ascending/descending key ordering.

Prefix subset and sorts
For a query to use an index to avoid a sort step, the keys specified in the 
order by clause must be a prefix subset of the index keys. For example, if 
the index specifies the keys as A, B, C, D:

• The following order by clauses can use the index:

• A

• A, B

• A, B, C

• A, B, C, D

• And other set of columns cannot use the index. For example, these are 
not prefix subsets:



CHAPTER 20    Access Methods and Query Costing for Single Tables

445

• A, C

• B, C, D

Key ordering and sorts
Both order by clauses and commands that create indexes can use the asc or 
desc (ascending or descending) ordering qualifications:

• For index creation, the asc and desc qualifications specify the order 
in which keys are to be stored in the index.

• In the order by clause, the ordering qualifications specify the order in 
which the columns are to be returned in the output.

To avoid a sort when using a specific index, the asc or desc qualifications 
in the order by clause must either be exactly the same as those used to 
create the index, or must be exactly the opposite.

Specifying ascending or descending order for index keys

Queries that use a mix of ascending and descending order in an order by 
clause do not perform a separate sort step if the index was created using 
the same mix of ascending and descending order as that specified in the 
order by clause, or if the index order is the reverse of the order specified in 
the order by clause. Indexes are scanned forward or backward, following 
the page chain pointers at the leaf level of the index.

For example, this command creates an index on the titles table with pub_id 
ascending and pubdate descending:

create index pub_ix 
    on titles (pub_id asc, pubdate desc)

The rows are ordered on the pages as shown in Figure 20-4. When the 
ascending and descending order in the query matches the index creation 
order, the result is a forward scan, starting at the beginning of the index or 
at the first qualifying row, returning the rows in order from each page, and 
following the next-page pointers to read subsequent pages.

If the ordering in the query is the exact opposite of the index creation 
order, the result is a backward scan, starting at the last page of the index or 
the page containing the last qualifying row, returning rows in backward 
order from each page, and following previous page pointers. 



Costing for queries using order by 

446  

Figure 20-4: Forward and backward scans on an index

The following query using the index shown in Figure 20-4 performs a 
forward scan:

select *
from titles
order by pub_id asc, pubdate desc

This query using the index shown in Figure 20-4 performs a backward 
scan:

select *
from titles
order by pub_id desc, pubdate asc

For the following two queries on the same table, the plan requires a sort 
step, since the order by clauses do not match the ordering specified for the 
index:

select *
from titles
order by pub_id desc, pubdate desc
select *
from titles
order by pub_id asc, pubdate asc

Note  Parallel sort operations are optimized very differently for partitioned 
tables. See Chapter 24, “Parallel Sorting,” for more information.

Page 1132
P066 12/20/93
P066 11/11/93
P066 10/4/93
P073 11/26/93

Page 1133
P073 10/14/93
P087 12/01/93
P087 10/4/93
P087 9/7/93

Page 1132
P066 12/20/93
P066 11/11/93
P066 10/4/93
P073 11/26/93

Page 1133
P073 10/14/93
P087 12/01/93
P087 10/4/93
P087 9/7/93

Forward scan: scans rows in 
order on the page, then 
follows the next-page 

Backward scan: scans rows in 
reverse order on the page, then 
follows the previous-page 



CHAPTER 20    Access Methods and Query Costing for Single Tables

447

How the optimizer costs sort operations
When Adaptive Server optimizes queries that require sorts:

• It computes the cost of using an index that matches the required sort 
order, if such an index exists.

• It computes the physical and logical I/O cost of creating a worktable 
and performing the sort for every index where the index order does 
not match the sort order. It computes the physical and logical I/O cost 
of performing a table scan, creating a worktable, and performing the 
sort. 

Adding the cost of creating and sorting the worktable to the cost of index 
access and the cost of creating and sorting the worktable favors the use of 
an index that supports the order by clause. However, when comparing 
indexes that are very selective, but not ordered, versus indexes that are 
ordered, but not selective:

• Access costs are low for the more selective index, and so are sort 
costs.

• Access costs are high for the less selective index, and may exceed the 
cost of access using the more selective index and sort.

Allpages-locked tables with clustered indexes
For allpages-locked tables with clustered indexes, order by queries that 
match the index keys are efficient if:

• There is also a search argument that uses the index, the index key 
positions the search on the data page for first qualifying row.

• The scan follows the next-page pointers until all qualifying rows have 
been found.

• No sort is needed.

In Figure 20-5, the index was created in ascending order, and the order by 
clause does not specify the order, so ascending is used by default.   



Costing for queries using order by 

448  

Figure 20-5: An order by query using a clustered index, allpages 
locking

 Queries requiring descending sort order (for example, order by title_id 
desc) can avoid sorting by scanning pages in  reverse order. If the entire 
table is needed for a query without a  where clause, Adaptive Server 
follows the index pointers to the last  page, and then scans backward using 
the previous page pointers. If the  where clause includes an index key, the 
index is used to position the  search, and then the pages are scanned 
backward, as shown in  Figure 20-6.  

Page 1133
Greane
Greaves
Greco

Page 1007
Bennet 1132
Greane 1133
Green 1144
Hunter 1127

Page 1009
Karsen 1009 Page 1144

Green
Greene
Highland

Page 1132
Bennet
Chan
Dull
Edwards

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pages Intermediate

Key           Pointer

Key           Pointer

select fname, lname, id
from employees
where lname between "Dull" 
and "Greene"
order by lname
Clustered index on lname



CHAPTER 20    Access Methods and Query Costing for Single Tables

449

Figure 20-6: An order by desc query using a clustered index

Sorts when index covers the query
When an index covers the query and the order by columns form a prefix 
subset of the index keys, the rows are returned directly from the 
nonclustered index leaf pages. If the columns do not form a prefix subset 
of the index keys, a worktable is created and sorted.

With a nonclustered index on au_lname, au_fname, au_id of the authors 
table, this query can return the data directly from the leaf pages:

select au_id, au_lname
from authors
order by au_lname, au_fname

Page 1007
Bennet 1132
Greane 1133
Green 1144
Hunter 1127

Page 1009
Karsen 1009

Page 1133
Greane
Greaves
Greco

Page 1144
Green
Greene
Highland

Page 1132
Bennet
Chan
Dull
Edwards

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pages Intermediate

Key           Pointer

Key           Pointer

select fname, lname, id
from employees
where lname <= "Highland"
order by lname desc
Clustered index on lname



Costing for queries using order by 

450  

Sorts and noncovering indexes
With a noncovering index, Adaptive Server determines whether using the 
index that supports the ordering requirements is cheaper than performing 
a table scan or using a more selective index, and then inserting rows into 
a worktable and sorting the data. The cost of using the index depends on 
the number of rows and the data row cluster ratio.

Backward scans and joins

If two or more tables are being joined, and the order by clause specifies 
descending order for index keys on the joined tables, any of the tables and 
indexes involved can be scanned with a backward scan to avoid the 
worktable and sort costs. If all the columns for one table are in ascending 
order, and the columns for the other tables are in descending order, the first 
table is scanned in ascending order and the others in descending order.

Deadlocks and descending scans

Descending scans may deadlock with queries performing update 
operations using ascending scans and with queries performing page splits 
and shrinks, except when the backward scans are performed at transaction 
isolation level 0.

The allow backward scans configuration parameter controls whether the 
optimizer uses the backward scan strategy. The default value of 1 allows 
descending scans. 

See the System Administration Guide for more information on this 
parameter. 

Also, see “Index scans” on page 961 for information on the number of 
ascending and descending scans performed and “Deadlocks by lock type” 
on page 969 for information on detecting deadlocks.



CHAPTER 20    Access Methods and Query Costing for Single Tables

451

Access Methods and Costing for or and in Clauses
When a query on a single table contains or clauses or an in (values_list) 
clause, it can be optimized in different ways, depending on the presence of 
indexes, the selectivity of the search arguments, the existence of other 
search arguments, and whether or not the clauses might return duplicate 
rows.

or syntax
or clauses take one of the following forms: 

where column_name1 = <value>
    or column_name1 = <value>
    ...

or: 

where column_name1 = <value>
    or column_name2 = <value>
    ...

in (values_list) converts to or processing
Preprocessing converts in lists to or clauses, so this query:

select title_id, price 
    from titles
    where title_id in ("PS1372", "PS2091","PS2106")

becomes:

select title_id, price 
    from titles
    where title_id = "PS1372"
        or title_id = "PS2091"
        or title_id = "PS2106"



Access Methods and Costing for or and in Clauses 

452  

Methods for processing or clauses
A single-table query including or clauses is a union of more than one 
query. Although some rows may match more than one of the conditions, 
each row must be returned only once. Depending on indexes and query 
clauses, or queries can be resolved by one of these methods:

• If any of the clauses linked by or is not indexed, the query must use a 
table scan. If there is an index on type, but no index on advance, this 
query performs a table scan:

select title_id, price
from titles
where type = "business" or advance > 10000

• If there is a possibility that one or more of the or clauses could match 
values in the same row, the query is resolved using the OR strategy, 
also known as using a dynamic index. The OR strategy selects the 
row IDs for matching rows into a worktable, and sorts the worktable 
to remove duplicate row IDs. For example, there can be rows for 
which both of these conditions are true:

select title_id 
from titles
where pub_id = "P076" or type > "business"

If there is an index on pub_id, and another on type, the OR strategy can 
be used. 

See “Dynamic index (OR strategy)” on page 454 for more 
information.

Note  The OR Strategy  (multiple matching index scans) is only 
considered for equality predicates. It is disqualified for range 
predicates even if meeting other conditions. As an example, when a 
select statement contains the following:

where bar between 1 and 5
or bar between 10 and 15

This will not be considered for the OR Strategy.

• If there is no possibility that the or clauses can select the same row, the 
query can be resolved with multiple matching index scans, also 
known as the special OR strategy. The special OR strategy does not 
require a worktable and sort. The or clauses in this query cannot select 
the same row twice:



CHAPTER 20    Access Methods and Query Costing for Single Tables

453

select title_id, price
from titles
where pub_id = "P076" or pub_id = "P087"

With an index on pub_id, this query can be resolved using two 
matching index scans. 

See “Multiple matching index scans (special OR strategy)” on page 
456 for more information.

• The costs of index access for each or clause are added together, and 
the cost of the sort, if required. If sum of these costs is greater than a 
table scan, the table scan is chosen. For example, this query uses a 
table scan if the total cost of all of the indexed scans on pub_id is 
greater than the table scan:

select title_id, price
from titles
where pub_id in ("P095", "P099", "P128", "P220", 
"P411", "P445", "P580", "P988")

• If the query contains additional search arguments on indexed 
columns, predicate transformation may add search arguments that can 
be optimized, adding alternative optimization options. The cost of 
using all alternative access methods is compared, and the cheapest 
alternative is selected. This query contains a search argument on type 
as well as clauses linked with or:

select title_id, type, price from titles
where type = "business" 
and (pub_id = "P076" or pubdate > "12/1/93")

With a separate index on each search argument, the optimizer uses the 
least expensive access method:

• The index on type

• The OR strategy on pub_id and pubdate

When table scans are used for or queries

A query with or clauses or an in (values_list) uses a table scan if either of 
these conditions is true:

• The cost of all the index accesses is greater than the cost of a table 
scan, or

• At least one of the columns is not indexed, so the only way to resolve 
the query conditions is to perform a table scan.



Access Methods and Costing for or and in Clauses 

454  

Dynamic index (OR strategy)

If the query uses the OR strategy because the query could return duplicate 
rows, the appropriate indexes are used to retrieve the row IDs for rows that 
satisfy each or clause. The row IDs for each or clause are stored in a 
worktable. Since the worktable contains only row IDs, it is called a 
“dynamic index.” Adaptive Server then sorts the worktable to remove the 
duplicate row IDs. The row IDs are used to retrieve the rows from the base 
tables. The total cost of the query includes:

• The sum of the index accesses, that is, for each or clause, the cost of 
using the index to access the row IDs on the leaf pages of the index 
(or on the data pages, for a clustered index on an allpages-locked 
table)

• The cost of reading the worktable and performing the sort

• The cost of using the row IDs to access the data pages

Figure 20-7 illustrates the process of building and sorting a dynamic index 
for an or query on two different columns. 



CHAPTER 20    Access Methods and Query Costing for Single Tables

455

Figure 20-7: Resolving or queries using the OR strategy

As shown in Figure 20-7, the optimizer can choose to use a different index 
for each clause. 

showplan displays “Using Dynamic Index” and “Positioning by Row 
IDentifier (RID)” when the OR strategy is used. 

See “Dynamic index message (OR strategy)” on page 807 for more 
information.

Queries in cursors cannot use the OR strategy, but must perform a table 
scan. However, queries in cursors can use the multiple matching index 
scans strategy.

Locking during queries that use the OR strategy depends on the locking 
scheme of the table.

Page Row
1441 4
1537 2
1537 2
1822 5
1941 2

Find rows on Save results Sort and 
remove duplicates

Page 1239
Backwards... 1527, 4
Computer... 1441,4
Computer... 1537,2
Optional... 1923, 7

Page 1473
$14 1427, 8
$15 1941, 2
$15 1537, 2
$15 1822, 5
$16 1445,6

Page Row
1441 4
1537 2
1941 2
1537 2
1822 5

index leaf pages in a worktable

select title_id, price
    from titles
    where price <= $15 or title like "Compute%"

title_id_ix

price_ix

Access rows on 
data pages

Page 1537
Using ... $27
Computer... $15
New... $18
Home... $44

Page 1441
Tricks ... $23
Computer... $29
Garden... $20
Best... $50

(to page 1882)

(to page 1941)



How aggregates are optimized 

456  

Multiple matching index scans (special OR strategy)

Adaptive Server uses multiple matching index scans when the or clauses 
are on the same table, and there is no possibility that the or clauses will 
return duplicate rows. For example, this query cannot return any duplicate 
rows:

select title 
    from titles
    where title_id in ("T6650", "T95065", "T11365")

This query can be resolved using multiple matching index scans, using the 
index on title_id. The total cost of the query is the sum of the multiple index 
accesses performed. If the index on title_id has 3 levels, each or clause 
requires 3 index reads, plus one data page read, so the total cost for each 
clause is 4 logical and 4 physical I/Os, and the total query cost is estimated 
to be 12 logical and 12 physical I/Os.

The optimizer determines which index to use for each or clause or value in 
the in (values_list) clause by costing each clause or value separately. If each 
column named in a clause is indexed, a different index can be used for each 
clause or value. showplan displays the message “Using N Matching Index 
Scans” when the special OR strategy is used. 

See “Matching index scans message” on page 806.

How aggregates are optimized
Aggregates are processed in two steps:

• First, appropriate indexes are used to retrieve the appropriate rows, or 
a table scan is performed. For vector (grouped) aggregates, the results 
are placed in a worktable. For scalar aggregates, results are computed 
in a variable in memory.

• Second, the worktable is scanned to return the results for vector 
aggregates, or the results are returned from the internal variable.

Vector aggregates can use a covering composite index on the aggregated 
column and the grouping column, if any, rather than performing table 
scans. For example, if the titles table has a nonclustered index on type, 
price, the following query retrieves its results by scanning the leaf level of 
the nonclustered index:



CHAPTER 20    Access Methods and Query Costing for Single Tables

457

select type, avg(price)
    from titles
    group by type

Scalar aggregates can also use covering indexes to reduce I/O. For 
example, the following query can use the index on type, price:

select min(price)
    from titles

Table 20-1 shows some of the access methods that the optimizer can 
choose for queries with aggregates when there is no where, having or group 
by clause in the query. 

Table 20-1: Special access methods for aggregates

Combining max and min aggregates
When used separately, max and min aggregates on leading index columns 
use special processing if there is no where clause in the query:

• min aggregates retrieve the first value on the root page of the index, 
performing a single read to find the value. 

• max aggregates follow the last entry on the last page at each index 
level until they reach the leaf level. 

However, when min and max are used together, this optimization is not 
available. The entire leaf level of an index is scanned to locate the first and 
last values.

min and max optimizations are not applied if:

Aggregate Index description Access method

min Scalar aggregate is leading column Use first the value on the root page of the index. 

max Clustered index on an allpages-
locked table

Follow the last pointer on root page and 
intermediate pages to data page, and return the last 
value.

Clustered index on a data-only-
locked table

Any nonclustered index

Follow last pointer on root page and intermediate 
pages to leaf page, and return the last value.

count(*) Nonclustered index or clustered 
index on a data-only-locked table

Count all rows in the leaf level of the index with the 
smallest number of pages.

count(col_name) Covering nonclustered index, or 
covering clustered index on data-
only-locked table

Count all non-null values in the leaf level of the 
smallest index containing the column name.



How update operations are performed 

458  

• The expression inside the max or min function is anything but a 
column. When numeric_col has a nonclustered index:

• max(numeric_col*2) contains an operation on a column, so the 
query performs a leaf-level scan of the index.

• max(numeric_col)*2 uses max optimization, because the 
multiplication is performed on the result of the function.

• There is another aggregate in the query.

• There is a group by clause.

Queries that use both min and max

If you have max and min aggregates that can be optimized, you should get 
much better performance by putting them in separate queries. For 
example, even if there is an index with price as the leading key, this query 
results in a full leaf-level scan of the index:

select max(price), min(price) 
    from titles

When you separate them, Adaptive Server uses the index once for each of 
the two queries, rather than scanning the entire leaf level. This example 
shows two queries:

select max(price) 
    from titles
select min(price) 
    from titles

How update operations are performed
Adaptive Server handles updates in different ways, depending on the 
changes being made to the data and the indexes used to locate the rows. 
The two major types of updates are deferred updates and direct updates. 
Adaptive Server performs direct updates whenever possible.

Direct updates
Adaptive Server performs direct updates in a single pass:



CHAPTER 20    Access Methods and Query Costing for Single Tables

459

• It locates the affected index and data rows.

• It writes the log records for the changes to the transaction log.

• It makes the changes to the data pages and any affected index pages.

There are three techniques for performing direct updates: 

• In-place updates

• Cheap direct updates

• Expensive direct updates 

Direct updates require less overhead than deferred updates and are 
generally faster, as they limit the number of log scans, reduce logging, 
save traversal of index B-trees (reducing lock contention), and save I/O 
because Adaptive Server does not have to refetch pages to perform 
modifications based on log records.

In-place updates

Adaptive Server performs in-place updates whenever possible. 

When Adaptive Server performs an in-place update, subsequent rows on 
the page are not moved; the row IDs remain the same and the pointers in 
the row offset table are not changed.

For an in-place update, the following requirements must be met:

• The row being changed cannot change its length. 

• The column being updated cannot be the key, or part of the key, of a 
clustered index on an allpages-locked table. Because the rows in a 
clustered index on an allpages-locked table are stored in key order, a 
change to the key almost always means that the row location is 
changed.

• One or more indexes must be unique or must allow duplicates.

• The update statement satisfies the conditions listed in “Restrictions 
on update modes through joins” on page 465.

• The affected columns are not used for referential integrity.

• There cannot be a trigger on the column.

• The table cannot be replicated (via Replication Server).



How update operations are performed 

460  

An in-place update is the fastest type of update because it makes a single 
change to the data page. It changes all affected index entries by deleting 
the old index rows and inserting the new index row. In-place updates affect 
only indexes whose keys are changed by the update, since the page and 
row locations are not changed.

Cheap direct updates

If Adaptive Server cannot perform an update in place, it tries to perform a 
cheap direct update—changing the row and rewriting it at the same offset 
on the page. Subsequent rows on the page are moved up or down so that 
the data remains contiguous on the page, but the row IDs remain the same. 
The pointers in the row offset table change to reflect the new locations.

A cheap direct update,must meet these requirements: 

• The length of the data in the row is changed, but the row still fits on 
the same data page, or the row length is not changed, but there is a 
trigger on the table or the table is replicated.

• The column being updated cannot be the key, or part of the key, of a 
clustered index. Because Adaptive Server stores the rows of a 
clustered index in key order, a change to the key almost always means 
that the row location is changed.

• One or more indexes must be unique or must allow duplicates.

• The update statement satisfies the conditions listed in “Restrictions 
on update modes through joins” on page 465.

• The affected columns are not used for referential integrity.

Cheap direct updates are almost as fast as in-place updates. They require 
the same amount of I/O, but slightly more processing. Two changes are 
made to the data page (the row and the offset table). Any changed index 
keys are updated by deleting old values and inserting new values. Cheap 
direct updates affect only indexes whose keys are changed by the update, 
since the page and row ID are not changed.

Expensive direct updates

If the data does not fit on the same page, Adaptive Server performs an 
expensive direct update, if possible. An expensive direct update deletes the 
data row, including all index entries, and then inserts the modified row and 
index entries.



CHAPTER 20    Access Methods and Query Costing for Single Tables

461

Adaptive Server uses a table scan or an index to find the row in its original 
location and then deletes the row. If the table has a clustered index, 
Adaptive Server uses the index to determine the new location for the row; 
otherwise, Adaptive Server inserts the new row at the end of the heap.

An expensive direct updatemust meet these requirements:

• The length of a data row is changed so that the row no longer fits on 
the same data page, and the row is moved to a different page, or the 
update affects key columns for the clustered index.

• The index used to find the row is not changed by the update.

• The update statement satisfies the conditions listed in “Restrictions 
on update modes through joins” on page 465.

• The affected columns are not used for referential integrity.

An expensive direct update is the slowest type of direct update. The delete 
is performed on one data page, and the insert is performed on a different 
data page. All index entries must be updated, since the row location is 
changed. 

Deferred updates
Adaptive Server uses deferred updates when direct update conditions are 
not met. A deferred update is the slowest type of update.

In a deferred update, Adaptive Server:

• Locates the affected data rows, writing the log records for deferred 
delete and insert of the data pages as rows are located.

• Reads the log records for the transaction and performs the deletes on 
the data pages and any affected index rows.

• Reads the log records a second time, and performs all inserts on the 
data pages, and inserts any affected index rows.

When deferred updates are required

Deferred updates are always required for:

• Updates that use self-joins

• Updates to columns used for self-referential integrity



How update operations are performed 

462  

• Updates to a table referenced in a correlated subquery

Deferred updates are also required when:

• The update moves a row to a new page while the table is being 
accessed via a table scan or a clustered index.

• Duplicate rows are not allowed in the table, and there is no unique 
index to prevent them.

• The index used to find the data row is not unique, and the row is 
moved because the update changes the clustered index key or because 
the new row does not fit on the page.

Deferred updates incur more overhead than direct updates because they 
require Adaptive Server to reread the transaction log to make the final 
changes to the data and indexes. This involves additional traversal of the 
index trees.

For example, if there is a clustered index on title, this query performs a 
deferred update:

update titles set title = "Portable C Software" where 
title = "Designing Portable Software"

Deferred index inserts
Adaptive Server performs deferred index updates when the update affects 
the index used to access the table or when the update affects columns in a 
unique index. In this type of update, Adaptive Server:

• Deletes the index entries in direct mode

• Updates the data page in direct mode, writing the deferred insert 
records for the index

• Reads the log records for the transaction and inserts the new values in 
the index in deferred mode

Deferred index insert mode must be used when the update changes the 
index used to find the row or when the update affects a unique index. A 
query must update a single, qualifying row only once—deferred index 
update mode ensures that a row is found only once during the index scan 
and that the query does not prematurely violate a uniqueness constraint.



CHAPTER 20    Access Methods and Query Costing for Single Tables

463

The update in Figure 20-8 changes only the last name, but the index row 
is moved from one page to the next. To perform the update, Adaptive 
Server:

1 Reads index page 1133, deletes the index row for “Greene” from that 
page, and logs a deferred index scan record. 

2 Changes “Green” to “Hubbard” on the data page in direct mode and 
continues the index scan to see if more rows need to be updated.

3 Inserts the new index row for “Hubbard” on page 1127.

Figure 20-8 shows the index and data pages prior to the deferred update 
operation, and the sequence in which the deferred update changes the data 
and index pages.



How update operations are performed 

464  

Figure 20-8: Deferred index update

Page 1421
18 Bennet
19 Hubbard
20 Yokomoto

Page 1421
18 Bennet
19 Green
20 Yokomoto

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1133
Greane 1307,4
Green 1421,2
Greene 1409,2

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Green
Page 1242

10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1307
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1409
21 Dull
22 Greene
23 White

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1009
Karsen 1411,3 1315

Root page Data pages Intermediate

Key  RowID Pointer

Key Pointer

Leaf pages 

Key  RowID Pointer

update employee
set lname = "Hubbard"
where lname = "Green"

Step 2: Change data 
page.

Step 1: Write log 
records, then delete 
index row.

Page 1133
Greane 1307,4
Greene 1409,2

Page 1127
Hubbard 1421,2
Hunter 1307,1
Jenkins 1242,4

 

Step 3: Read log, 
insert index row.

Before update

Update steps



CHAPTER 20    Access Methods and Query Costing for Single Tables

465

Assume a similar update to the titles table:

update titles
set title = "Computer Phobic’s Manual", 
    advance = advance * 2 
where title like "Computer Phob%"

This query shows a potential problem. If a scan of the nonclustered index 
on the title column found “Computer Phobia Manual,” changed the title, 
and multiplied the advance by 2, and then found the new index row 
“Computer Phobic’s Manual” and multiplied the advance by 2, the 
advance wold be very skewed against the reality.

A deferred index delete may be faster than an expensive direct update, or 
it may be substantially slower, depending on the number of log records 
that need to be scanned and whether the log pages are still in cache. 

During deferred update of a data row, there can be a significant time 
interval between the delete of the index row and the insert of the new index 
row. During this interval, there is no index row corresponding to the data 
row. If a process scans the index during this interval at isolation level 0, it 
will not return the old or new value of the data row.

Restrictions on update modes through joins
Updates and deletes that involve joins can be performed in direct, 
deferred_varcol, or deferred_index mode when the table being updated is 
the outermost table in the join order, or when it is preceded in the join order 
by tables where only a single row qualifies.

Joins and subqueries in update and delete statements

The use of the from clause to perform joins in update and delete statements 
is a Transact-SQL extension to ANSI SQL. Subqueries in ANSI SQL form 
can be used in place of joins for some updates and deletes.

This example uses the from syntax to perform a join:

update t1 set t1.c1 = t1.c1 + 50
from t1, t2
where t1.c1 = t2.c1
and t2.c2 = 1

The following example shows the equivalent update using a subquery:

update t1 set c1 = c1 + 50



How update operations are performed 

466  

where t1.c1 in (select t2.c1
                from t2 
                where t2.c2 = 1)

The update mode that is used for the join query depends on whether the 
updated table is the outermost query in the join order—if it is not the 
outermost table, the update is performed in deferred mode. The update that 
uses a subquery is always performed as a direct, deferred_varcol, or 
deferred_index update.

For a query that uses the from syntax and performs a deferred update due 
to the join order, use showplan and statistics io to determine whether 
rewriting the query using a subquery can improve performance. Not all 
queries using from can be rewritten to use subqueries.

Deletes and updates in triggers versus referential integrity

Triggers that join user tables with the deleted or inserted tables are run in 
deferred mode. If you are using triggers solely to implement referential 
integrity, and not to cascade updates and deletes, then using declarative 
referential integrity in place of triggers may avoid the penalty of deferred 
updates in triggers.

Optimizing updates
showplan messages provide information about whether an update is 
performed in direct mode or deferred mode. If a direct update is not 
possible, Adaptive Server updates the data row in deferred mode. There 
are times when the optimizer cannot know whether a direct update or a 
deferred update will be performed, so two showplan messages are 
provided:

• The “deferred_varcol” message shows that the update may change the 
length of the row because a variable-length column is being updated. 
If the updated row fits on the page, the update is performed in direct 
mode; if the update does not fit on the page, the update is performed 
in deferred mode.

• The “deferred_index” message indicates that the changes to the data 
pages and the deletes to the index pages are performed in direct mode, 
but the inserts to the index pages are performed in deferred mode.



CHAPTER 20    Access Methods and Query Costing for Single Tables

467

These types of direct updates depend on information that is available only 
at runtime, since the page actually has to be fetched and examined to 
determine whether the row fits on the page.

Designing for direct updates

When you design and code your applications, be aware of the differences 
that can cause deferred updates. Follow these guidelines to help avoid 
deferred updates:

• Create at least one unique index on the table to encourage more direct 
updates.

• Whenever possible, use nonkey columns in the where clause when 
updating a different key.

• If you do not use null values in your columns, declare them as not null 
in your create table statement.

Effects of update types and indexes on update modes

Table 20-2 shows how indexes affect the update mode for three different 
types of updates. In all cases, duplicate rows are not allowed. For the 
indexed cases, the index is on title_id. The three types of updates are:

• Update of a variable-length key column:

update titles set title_id = value
    where title_id = "T1234"

• Update of a fixed-length nonkey column:

update titles set pub_date = value
        where title_id = "T1234"

• Update of a variable-length nonkey column:

    update titles set notes = value
        where title_id = "T1234"

Table 20-2 shows how a unique index can promote a more efficient update 
mode than a nonunique index on the same key. Pay particular attention to 
the differences between direct and deferred in the shaded areas of the table. 
For example, with a unique clustered index, all of these updates can be 
performed in direct mode, but they must be performed in deferred mode if 
the index is nonunique.



How update operations are performed 

468  

For a table with a nonunique clustered index, a unique index on any other 
column in the table provides improved update performance. In some cases, 
you may want to add an IDENTITY column to a table in order to include 
the column as a key in an index that would otherwise be nonunique.

Table 20-2: Effects of indexing on update mode

If the key for an index is fixed length, the only difference in update modes 
from those shown in the table occurs for nonclustered indexes. For a 
nonclustered, nonunique index, the update mode is deferred_index for 
updates to the key. For a nonclustered, unique index, the update mode is 
direct for updates to the key.

If the length of varchar or varbinary is close to the maximum length, use 
char or binary instead. Each variable-length column adds row overhead 
and increases the possibility of deferred updates. 

Using max_rows_per_page to reduce the number of rows allowed on a 
page increases direct updates, because an update that increases the length 
of a variable-length column may still fit on the same page. 

For more information on using max_rows_per_page, see “Using 
max_rows_per_page on allpages-locked tables” on page 291.

Using sp_sysmon while tuning updates
You can use showplan to determine whether an update is deferred or direct, 
but showplan does not give you detailed information about the type of 
deferred or direct update. Output from the sp_sysmon or Adaptive Server 
Monitor supplies detailed statistics about the types of updates performed 
during a sample interval.

Update To:

Index 
Variable-
length key

Fixed-length 
column

Variable-
length column

No index N/A direct deferred_varcol

Clustered, unique direct direct direct

Clustered, not unique deferred deferred deferred

Clustered, not unique, with a 
unique index on another column

deferred direct deferred_varcol

Nonclustered, unique deferred_varcol direct direct

Nonclustered, not unique deferred_varcol direct deferred_varcol



CHAPTER 20    Access Methods and Query Costing for Single Tables

469

Run sp_sysmon as you tune updates, and look for reduced numbers of 
deferred updates, reduced locking, and reduced I/O. 

See “Transaction detail” on page 942 for more information.



How update operations are performed 

470  



471

C H A P T E R  2 1 Accessing Methods and Costing 
for Joins and Subqueries

This chapter introduces the methods that Adaptive Server uses to access 
rows in tables when more than one table is used in a query, and how the 
optimizer costs access. 

In determining the cost of multitable queries, Adaptive Server uses many 
of the same formulas discussed in Chapter 20, “Access Methods and 
Query Costing for Single Tables.”

Costing and optimizing joins
Joins extract information from two or more tables. In a two-table join, one 
table is treated as the outer table and the other table is treated as the inner 
table. Adaptive Server examines the outer table for rows that satisfy the 
query conditions. For each row in the outer table that qualifies, Adaptive 
Server then examines the inner table, looking at each row where the join 
columns match.

Optimizing join queries is extremely important for system performance, 
since relational databases make heavy use of joins. Queries that perform 
joins on several tables are especially critical to performance, as explained 
in the following sections.

Topic Page
Costing and optimizing joins 471

Nested-loop joins 476

Access methods and costing for sort-merge joins 479

Enabling and disabling merge joins 491

Reformatting strategy 492

Subquery optimization 493

or Clauses versus unions in joins 504



Costing and optimizing joins 

472  

In showplan output, the order of “FROM TABLE” messages indicates the 
order in which Adaptive Server chooses to join tables. 

See “FROM TABLE message” on page 775 for an example that joins 
three tables. Some subqueries are also converted to joins. 

See “Flattening in, any, and exists subqueries” on page 494.

Processing
By default, Adaptive Server uses nested-loop joins, and also consider 
merge joins, if this feature is enabled at the server-wide or session level.

When merge joins are enabled, Adaptive Server can use either nested-loop 
joins or merge joins to process queries involving two or more tables. For 
each join, the optimizer costs both methods. For queries involving more 
than two tables, the optimizer examines query costs for merge joins and 
for nested-loops, and chooses the mix of merge and nested-loop joins that 
provides the cheapest query cost.

Index density and joins
The optimizer uses a statistic called the total density to estimate the 
number of rows in a joined table that match a particular value during the 
join. 

See “Density values and joins” on page 394 for more information.

The query optimizer uses the total density to estimate the number of rows 
that will be returned for each scan of the inner table of a join. For example, 
if the optimizer is considering a nested-loop join with a 250,000-row table, 
and the table has a density of .0001, the optimizer estimates that an average 
of 25 rows from the inner table match for each row that qualifies in the 
outer table. 

optdiag reports the total density for each column for which statistics have 
been created. You can also see the total density used for joins in dbcc 
traceon(302) output.



CHAPTER 21    Accessing Methods and Costing for Joins and Subqueries

473

Multicolumn densities

Adaptive Server maintains the total density for each prefix subset of 
columns in a composite index. If two tables are being joined on multiple 
leading columns of a composite index, the optimizer uses the appropriate 
density for an index when estimating the cost of a join using that index. In 
a 10,000-row table with an index on seven columns, the entire seven-
column key might have a density of 1/10,000, while the first column might 
have a density of only 1/2, indicating that it would return 5000 rows.

Datatype mismatches and joins
One of the most common problems in optimizing joins on tables that have 
indexes is that the datatypes of the join columns are incompatible. When 
this occurs, one of the datatypes must be converted to the other, and an 
index can only be used for one side of the join. 

See “Datatype mismatches and query optimization” on page 395 for more 
information.

Join permutations
When you are joining four or fewer tables, Adaptive Server considers all 
possible permutations of join orders for the tables. However, due to the 
iterative nature of Adaptive Server’s optimizer, queries on more than four 
tables examine join order combinations in sets of two to four tables at a 
time. This grouping during join order costing is used because the number 
of permutations of join orders multiplies with each additional table, 
requiring lengthy computation time for large joins. The method the 
optimizer uses to determine join order has excellent results for most 
queries and requires much less CPU time than examining all permutations 
of all combinations. 

If the number of tables in a join is greater than 25, Adaptive Server 
automatically reduces the number of tables considered at a time. Table 21-
1 shows the default values.



Costing and optimizing joins 

474  

Table 21-1: Tables considered at a time during a join

The optimizer starts by considering the first two to four tables, and 
determining the best join order for those tables. It remembers the outer 
table from the best plan involving the tables it examined and eliminates 
that table from the set of tables. Then, it optimizes the best set of tables out 
of the remaining tables. It continues until only two to four tables remain, 
at which point it optimizes them.

For example, suppose you have a select statement with the following from 
clause:

 from T1, T2, T3, T4, T5, T6

The optimizer looks at all possible sets of 4 tables taken from these 6 
tables. The 15 possible combinations of all 6 tables are:

T1, T2, T3, T4
T1, T2, T3, T5
T1, T2, T3, T6
T1, T2, T4, T5
T1, T2, T4, T6
T1, T2, T5, T6
T1, T3, T4, T5
T1, T3, T4, T6
T1, T3, T5, T6
T1, T4, T5, T6
T2, T3, T4, T5
T2, T3, T4, T6
T2, T3, T5, T6
T2, T4, T5, T6
T3, T4, T5, T6

For each one of these combinations, the optimizer looks at all the join 
orders (permutations). For each set of 4 tables, there are 24 possible join 
orders, for a total of 360 (24 * 15) permutations. For example, for the set 
of tables T2, T3, T5, and T6, the optimizer looks at these 24 possible orders:

T2, T3, T5, T6
T2, T3, T6, T5
T2, T5, T3, T6
T2, T5, T6, T3
T2, T6, T3, T5

Tables joined Tables considered at a time

4 – 25 4

26 – 37 3

38 – 50 2



CHAPTER 21    Accessing Methods and Costing for Joins and Subqueries

475

T2, T6, T5, T3
T3, T2, T5, T6
T3, T2, T6, T5
T3, T5, T2, T6
T3, T5, T6, T2
T3, T6, T2, T5
T3, T6, T5, T2
T5, T2, T3, T6
T5, T2, T6, T3
T5, T3, T2, T6
T5, T3, T6, T2
T5, T6, T2, T3
T5, T6, T3, T2
T6, T2, T3, T5
T6, T2, T5, T3
T6, T3, T2, T5
T6, T3, T5, T2
T6, T5, T2, T3
T6, T5, T3, T2

Let’s say that the best join order is determined to be:

T5, T3, T6, T2

At this point, T5 is designated as the outermost table in the query. 

The next step is to choose the second-outermost table. The optimizer 
eliminates T5 from consideration as it chooses the rest of the join order. 
Now, it has to determine where T1, T2, T3, T4, and T6 fit into the rest of 
the join order. It looks at all the combinations of four tables chosen from 
these five:

T1, T2, T3, T4
T1, T2, T3, T6
T1, T2, T4, T6
T1, T3, T4, T6
T2, T3, T4, T6

It looks at all the join orders for each of these combinations, remembering 
that T5 is the outermost table in the join. Let’s say that the best order in 
which to join the remaining tables to T5 is:

T3, T6, T2, T4 

So the optimizer chooses T3 as the next table after T5 in the join order for 
the entire query. It eliminates T3 from consideration in choosing the rest of 
the join order. 

The remaining tables are:



Nested-loop joins 

476  

T1, T2, T4, T6

Now we’re down to 4 tables, so the optimizer looks at all the join orders 
for all the remaining tables. Let’s say the best join order is:

T6, T2, T4, T1

This means that the join order for the entire query is:

T5, T3, T6, T2, T4, T1

Outer joins and join permutations

Outer joins restrict the set of possible join orders. When the inner member 
of an outer join is compared to an outer member, the outer member must 
precede the inner member in the join order. The only join permutations 
that are considered for outer joins are those that meet this requirement. For 
example, these two queries perform outer joins, the first using ANSI SQL 
syntax, the second using Transact-SQL syntax:

select T1.c1, T2.c1, T3.c2, T4.c2
from T4 inner join T1 on T1.c1 = T4.c1
left outer join T2 on T1.c1 = T2.c1 
left outer join T3 on T2.c2 = T3.c2
select T1.c1, T2.c1, T3.c2, T4.c2
from T1 , T2, T3, T4
where T1.c1 *= T2.c1 
and T2.c2 *= T3.c2 
and T1.c1 = T4.c1

The only join orders considered place T1 outer to T2 and T2 outer to T3. 
The join orders considered by the optimizer are:

T1, T2, T3, T4
T1, T2, T4, T3
T1, T4, T2, T3
T4, T1, T2, T3

Nested-loop joins
Nested-loop joins provide efficient access when tables are indexed on join 
columns. The process of creating the result set for a nested-loop join is to 
nest the tables, and to scan the inner tables repeatedly for each qualifying 
row in the outer table, as shown in Figure 21-1. 



CHAPTER 21    Accessing Methods and Costing for Joins and Subqueries

477

Figure 21-1: Nesting of tables during a nested-loop join

In Figure 21-1, the access to the tables to be joined is nested:

• TableA is accessed once. If the table has no useful indexes, a table scan 
is performed. If an index can reduce I/O costs, the index is used to 
locate the rows.

• TableB is accessed once for each qualifying row in TableA. If 15 rows 
from TableA match the conditions in the query, TableB is accessed 15 
times. If TableB has a useful index on the join column, it might require 
3 I/Os to read the data page for each scan, plus one I/O for each data 
page. The cost of accessing TableB would be 60 logical I/Os.

• TableC is accessed once for each qualifying row in TableB each time 
TableB is accessed. If 10 rows from TableB match for each row in 
TableA, then TableC is scanned 150 times. If each access to TableC 
requires 3 I/Os to locate the data row, the cost of accessing TableC is 
450 logical I/Os.

If TableC is small, or has a useful index, the I/O count stays reasonably 
small. If TableC is large and has no useful index on the join columns, the 
optimizer may choose to use a sort-merge join or the reformatting strategy 
to avoid performing extensive I/O.

Scan inner TableB

Scan innermost 
TableC

For each qualifying row in TableB

For each qualifying row in TableA



Nested-loop joins 

478  

Cost formula
For a nested-loop join with two tables, the formula for estimating the cost 
is:

With additional tables, the cost of a nested-loop join is:

How inner and outer tables are determined
The outer table is usually the one that has:

• The smallest number of qualifying rows, and/or

• The largest numbers of I/Os required to locate rows.

The inner table usually has:

• The largest number of qualifying rows, and/or

• The smallest number of reads required to locate rows.

For example, when you join a large, unindexed table to a smaller table with 
indexes on the join key, the optimizer chooses:

• The large table as the outer table, so that the large table is scanned 
only once.

• The indexed table as the inner table, so that each time the inner table 
is accessed, it takes only a few reads to find rows.

Join cost = Cost of accessing A + 
# of qualifying rows in A * Pages of B to scan for each qualifying row

Cost of accessing outer table
+ (Number of qualified rows in outer) * ( Cost of accessing inner table)
+ ...
+ (Number of qualified rows from previous) * (Cost of accessing innermost table)



CHAPTER 21    Accessing Methods and Costing for Joins and Subqueries

479

Access methods and costing for sort-merge joins
There are four possible execution methods for merge joins:

• Full-merge join – the two tables being joined have useful indexes on 
the join columns. The tables do not need to be sorted, but can be 
merged using the indexes.

• Left-merge join – sort the inner table in the join order, then merge with 
the left, outer table.

• Right-merge join – sort the outer table in the join order, then merge 
with the right, inner table.

• Sort-merge join – sort both tables, then merge.

Merge joins always operate on stored tables – either user tables or 
worktables created for the merge join. When a worktable is required for a 
merge join, it is sorted into order on the join key, then the merge step is 
performed. The costing for any merge joins that involve sorting includes 
the estimated I/O cost of creating and sorting a worktable. For full-merge 
joins, the only cost involved is scanning the tables.

Figure 21-2 provides diagrams of the merge join types.



Access methods and costing for sort-merge joins 

480  

Figure 21-2: Merge join types

Left-merge join (LMJ)

Sort-merge join (SMJ)

Full-merge join (FMJ) Step 1

T1 T2

FMJ

Step 1

T2

Worktable1

Step 2

T1 Worktable1

sort
LMJ

Right-merge join (RMJ) Step 1

T1

Worktable1

Step 2

Worktable1 T2

sort
RMJ

Step 1

T1

Worktable1

Step 3

Worktable1 Worktable2

sort
SMJ

Step 2

T2

Worktable2

sort



CHAPTER 21    Accessing Methods and Costing for Joins and Subqueries

481

How a full-merge is performed
If both Table1 and Table2 have indexes on the join key, this query can use 
a full-merge join:

select *
    from Table1, Table2
    where Table1.c1 = Table2.c2
    and Table1.c1 between 100 and 120

If both tables are allpages-locked tables with clustered indexes, and Table1 
is chosen as the outer table, the index is used to position the search on the 
data page at the row where the value equals 100. The index on Table2 is 
also used to position the scan at the first row in Table2 where the join 
column equals 100. From this point, rows from both tables are returned as 
the scan moves forward on the data pages. 

Figure 21-3: A serial merge scan on two tables with clustered 
indexes

Merge joins can also be performed using nonclustered indexes. The index 
is used to position the scan on the first matching value on the leaf page of 
the index. For each matching row, the index pointers are used to access the 
data pages. Figure 21-4 shows a full-merge scan using a nonclustered 
index on the inner table. 

Page 1037
98
99

100
101
102

Page 3423
93

100
102
105
113
122

Page 1040
105
109
113
117
122

Table1 Table2



Access methods and costing for sort-merge joins 

482  

Figure 21-4: Full merge scan using a nonclustered index on the 
inner table

How a right-merge or left-merge is performed
A right-merge or left-merge join always operates on a user table and a 
worktable created for the merge join. There are two steps:

1 A table or set of tables is scanned, and the results are inserted into a 
worktable.

2 The worktable is sorted and then merged with the other table in the 
join, using the index.

Page 1037
98
99

100
101
102

Page 1040
105
109
113
117
122

Leaf pageData pages

Page 1752
102 
823
113
29

Page 1907
105
842
113
472

Page 1903
57
623
100

Page 3423
93 1955,1
100 1903,3
102 1752,2
105 1907,1
113 1752,3
122 2409,4

Table1 Table2

Data pages



CHAPTER 21    Accessing Methods and Costing for Joins and Subqueries

483

How a sort-merge is performed
For a sort-merge join, there are three steps, since the inputs to the sort-
merge joins are both sorted worktables:

1 A table or set of tables is scanned and the results are inserted into one 
worktable. This will be the outer table in the merge.

2 Another table is scanned and the results are inserted into another 
worktable. This will be the inner table in the merge.

3 Each of the worktables is sorted, then the two sorted result sets are 
merged.

Mixed example
This query performs a mixture of merge and nested-loop joins:

select pub_name, au_lname, price
from titles t, authors a, titleauthor ta,
            publishers p
where t.title_id = ta.title_id
    and a.au_id = ta.au_id
    and p.pub_id = t.pub_id
    and type = ’business’
    and price < $25

Adaptive Server executes this query in three steps:

• Step 1 uses 3 worker processes to scan titles as the outer table, 
performing a full-merge join with titleauthor and then a nested-loop 
join with authors. No sorting is required for the full-merge join. titles 
has a clustered index on title_id. The index on titleauthor, ta_ix, 
contains the title_id and au_id, so the index covers the query. The 
results are stored in Worktable1, for use in the sort-merge join 
performed in Step 3. 

• Step 2 scans the publishers table, and saves the needed columns 
(pub_name and pub_id) in Worktable2.

• In Step 3:

• Worktable1 is sorted into join column order, on pub_id.

• Worktable2 is sorted into order on pub_id.

• The sorted results are merged.



Access methods and costing for sort-merge joins 

484  

Figure 21-5 shows the steps. 

Figure 21-5: Multiple steps in processing a merge join

showplan messages for sort-merge joins

showplan messages for each type of merge join appear as specific 
combinations: 

• Full-merge join – there are no “FROM TABLE Worktable” messages, 
only the “inner table” and “outer table” messages for base tables in the 
query.

• Right-merge join – the “outer table” is always a worktable.

Step 1

publishers

FMJ

Worktable2Step 2

titles titleauthor

Worktable1

authors

NLJ

Step 3 SMJ

Worktable1 Worktable2

sortsort



CHAPTER 21    Accessing Methods and Costing for Joins and Subqueries

485

• Left-merge join – the “inner table” is always a worktable.

• Sort-merge join – both tables are worktables.

For more information, see “Messages describing access methods, 
caching, and I/O cost” on page 793.

Costing for merge joins
The total cost for merge joins depends on:

• The type of merge join.

• Full-merge joins do not require sorts and worktables.

• For right-merge and left-merge joins, one side of the join is 
selected into a worktable, then sorted.

• For sort-merge joins, both sides of the join are selected into 
worktables, and each worktable is sorted.

• The type of index used to scan the tables while performing the merge 
step.

• The locking scheme of the underlying table: costing models for most 
scans are different for allpages locking than data-only locking. 
Clustered index access cost on data-only-locked tables is more 
comparable to nonclustered access.

• Whether the query is executed in serial or parallel mode.

• Whether the outer table has duplicate values for the join key.

In general, when comparing costs between a nested-loop join and a merge 
join for the same tables, using the same indexes, the cost for the outer table 
remains the same. Access to the inner table costs less for a merge join 
because the scan remains positioned on the leaf pages as matching values 
are returned, saving the logical I/O cost of scanning down the index from 
the root page each time.



Access methods and costing for sort-merge joins 

486  

Costing for a full-merge with unique values
If a full-merge join is performed in serial mode and there is no need to sort 
the tables, the cost of a merge join on T1 and T2 is the sum of the cost of 
the scans of both tables, as long as all join values are unique:

The cost saving of a merge join over a nested-loop join is:

• For a nested-loop join, access to the inner table of the join starts at the 
root page of the index for each row from the outer table that qualifies.

• For a full-merge join, the upper levels of the index are used for the 
first access, to position the scan:

• On the leaf page of the index, for nonclustered indexes and 
clustered indexes on data-only-locked tables

• On the data page, if there is a clustered index on an allpages-
locked table

The higher levels of the index do not need to be read for each 
matching outer row.

Example: allpages-locked tables with clustered indexes
For allpages-locked tables where clustered indexes are used to perform the 
scans, the search arguments on the index are used to position the search on 
the first matching row of each table. The total cost of the query is the cost 
of scanning forward on the data pages of each table. For example, with 
clustered indexes on t1(c1) and t2(c1), the query on two allpages-locked 
tables can use a full-merge join:

select t1.c2, t2.c2
from t1, t2
where t1.c1 = t2.c1
and t1.c1 >= 1000 and t1.c1 < 1100

If there are 100 rows that qualify from t1, and 100 rows from t2, and each 
of these tables has 10 rows per page, and an index height of 3, the costs are:

• 3 index pages to position the scan on the first matching row of t1

• Scanning 10 pages of t1

Cost of scan of T1 + Cost of scan of T2Merge join cost = 



CHAPTER 21    Accessing Methods and Costing for Joins and Subqueries

487

• 3 index pages to position the scan on the first matching row of t2

• Scanning 10 pages of t2

Costing for a full-merge with duplicate values
If the outer table in a merge join has duplicate values, the inner table must 
be accessed from the root page of the index for each duplicate value. This 
query is the same as the previous example:

select t1.c2, t2.c2
from t1, t2
where t1.c1 = t2.c1
and t1.c1 >= 1000 and t1.c1 < 1100

If t1 is the outer table, and there are duplicate values for some of the rows 
in t1, so that there are 120 rows between 1000 and 1100,with 20 duplicate 
values, then each time one of the duplicate values is accessed, the scan of 
t2 is restarted from the root page of the index. If one row for t2 matches 
each value from t1, the I/O costs for this query are:

• 3 index pages to position on the first matching row of t1

• Scanning 12 pages of t1

• 3 index pages to position on the first matching row of t2, plus an I/O 
to read the data page

• For the remaining rows:

• If the value from t1 is a duplicate, the scan of t2 restarts from the 
root page of the index.

• For all values of t1 that are not duplicates, the scan remains 
positioned on the leaf level of t2. The scan on the inner table 
remains positioned on the leaf page as rows are returned until the 
next duplicate value in the outer table requires the scan to restart 
from the root page.

This formula gives the cost of the scan of the inner table for a merge join:

Cost of scan of inner = Num duplicate values * (index height + scan size) 
+ Num unique values * scan size



Access methods and costing for sort-merge joins 

488  

The scan size is the number of pages of the inner table that need to be read 
for each value in the outer table. For tables where multiple inner rows 
match, the scan size is the average number of pages that need to be read 
for each outer row.

Costing sorts
Sort cost during sort-merge joins depends on:

• The size of the worktables, which depends on the number of columns 
and rows selected

• The setting for the number of sort buffers configuration parameter, 
which determines how many pages of the cache can be used

These variables affect the number of merge runs required to sort the 
worktable.

Worktable size for sort-merge joins

When a worktable is created for a merge join that requires a sort, only the 
columns that are needed for the result set and for later joins in the query 
execution are selected into the worktable. When the worktable for the titles 
table is created for the join shown in Figure 21-5 on page 484:

• Worktable1 includes the price and authors.state, because they are part 
of the result set, and pub_id, because it is needed for a subsequent join.

• Worktable2 includes the publishers.state column because it is part of 
the result set, and the pub_id, because it is needed for the merge step.

The type column is used as a search argument while the rows from titles 
are selected, but since it is not used later in the query or in the result set, it 
is not included in the worktable.

Each sort performed for a merge join can use up to number of sort buffers 
for intermediate sort steps. Sort buffers for worktable sorts are allocated 
from the cache used by tempdb. If the number of pages to be sorted is less 
the number of sort buffers, then the number of buffers reserved for the sort 
is the number of pages in the worktable.



CHAPTER 21    Accessing Methods and Costing for Joins and Subqueries

489

When merge joins cannot be used
Merge joins are not used:

• For joins using <, >, <=, >=, or != on the join columns.

• For outer joins, that is, queries using *= or =*, and left join and right join.

• For queries that include a text or image column or Java object columns 
in the select list or in a where clause. 

• For subqueries that are not flattened or materialized in parallel 
queries.

• For multitable updates and deletes, such as:

update R set a = 5
    from R, S, T
    where ...

• For joins to perform referential integrity checks for insert, update, and 
delete commands. These joins are generated internally to check for 
the existence of the column values. They usually involve joins that 
return a single value from the referenced table. Often, these joins are 
supported by indexes. There would be no benefit from using a merge 
join for constraint checks.

• When the number of bytes in a row for a worktable would exceed the 
page-size limit (1960 bytes of user data) or the limit on the number of 
columns (1024). If the select list and required join columns for a join 
would create a worktable that exceeds either of these limits, the 
optimizer does not consider performing a merge join at that point in 
the query plan.

• When the use of worktables for a merge join would require more than 
the maximum allowable number of worktables for a query (14).

There are some limits on where merge joins can be used in the join order:

• Merge joins can be performed only before an existence join. Some 
distinct queries are turned into existence joins, and merge joins are not 
used for these.

• Full-merge joins and left-merge joins can be performed only on the 
outermost tables in the join order.



Access methods and costing for sort-merge joins 

490  

Use of worker processes
When parallel processing is enabled, merge joins can use multiple worker 
processes to perform:

• The scan that selects rows into the worktables

• Worktable sort operations

• The merge join and subsequent joins in the step

See “Parallel range-based scans” on page 546 for more information.

Recommendations for improved merge performance
Here are some suggestions for improving sort-merge join performance:

• To reduce the size of worktables select only needed columns for tables 
used in merge joins. Avoid using select * unless you need all columns 
of the tables. This reduces the load on tempdb and the cost of sorting 
the result tables. 

• If you are concerned about possible performance impacts of merge 
joins or possible space problems in tempdb, see Chapter 28, 
“Introduction to Abstract Plans,” for a discussion of how abstract 
query plans can help determine which queries on your system use 
merge joins.

• Look for opportunities for index covering. One example is queries 
where joins are in the form:

select t1.c3, t3.c4
from t1, t2, t3
wehre t1.c1 = t2.c1 and t2.c2 = t3.c2
and ...

and columns from t2 are not in the select list, or only the join columns 
are in the select list. An index on the join columns, t2(c1, c2) covers 
the query, allowing a merge join to avoid accessing the data pages of 
t2. 

• Merge joins can use indexes created in ascending or descending order 
when two tables are joined on multiple columns, such as these:

A.c1 = B.c1 and A.c2 = B.c2 and A.c3 = B.c3



CHAPTER 21    Accessing Methods and Costing for Joins and Subqueries

491

The column order specified for the indexes must be an exact match, 
or exactly the reverse, for all columns to be used as join predicates 
when costing the join and accessing the data. If there is a mismatch of 
ordering in second or subsequent columns, only the matching 
columns are used for the join, and the remaining columns are used to 
restrict the results after the row has been retrieved. This table shows 
some examples for the query above:

Index key ordering is generally chosen to eliminate sort costs for order 
by queries. Using compatible ordering for frequently joined tables can 
also reduce join costs.

Enabling and disabling merge joins
You can enable and disable merge joins at the server and session level 
using set sort_merge, or at the server level with the configuration 
parameter enable sort-merge joins and JTC. This configuration parameter 
also enables and disables join transitive closure.

Index creation order
Clauses used as join 
predicates

A(c1 asc, c2 asc, c3 asc)
B(c1 asc, c2 asc, c3 asc)

All three clauses. 

A(c1 asc, c2 asc, c3 asc)
B(c1 desc, c2 desc, c3 desc)

All three clauses. 

A(c1 asc, c2 asc, c3 asc)
B(c1 desc, c2 desc, c3 asc)

The first two join clauses are used as 
join predicates and the third clause is 
evaluated as a restriction on the 
result. 

A1(c1 asc, c2 desc, c3 desc)
B1(c1 desc, c2 desc, c3 asc)

Only the first join clause is used as a 
join predicate. The remaining two 
clauses is evaluated as restrictions on 
the result set. 



Reformatting strategy 

492  

At the server level
To enable merge joins server-wide, set enable sort-merge joins and JTC to 
1. The default value is 0, which means that merge joins are not considered. 
When this value is set to 1, merge joins and join transitive closure are 
considered for equijoins. If merge joins are disabled at the server level, 
they can be enabled for a session with set sort_merge.

Join transitive closure can be enabled independently at the session level 
with set jtc on. 

See “Enabling and disabling join transitive closure” on page 418.

The configuration parameter is dynamic, and can be reset without 
restarting the server.

At the session level
To enable merge joins for a session, use:

set sort_merge on

To disable merge joins during a session, use:

set sort_merge off

The session setting has precedence over the server-wide setting; you can 
use merge joins in a session or stored procedure even if they are disabled 
at the server-wide level.

Reformatting strategy
When a table is large and has no useful index for a join, the optimizer 
considers a sort merge join, and also considers creating and sorting a 
worktable, and using a nested-loop join.

The process of generating a worktable with a clustered index and 
performing a nested-loop join is known as reformatting.



CHAPTER 21    Accessing Methods and Costing for Joins and Subqueries

493

Like a sort-merge join, reformatting scans the tables and copies qualifying 
rows to a worktable. But instead of the sort and merge used for a merge 
join, Adaptive Server creates a temporary clustered index on the join 
column for the inner table. In some cases, creating and using the clustered 
index is cheaper than a sort-merge join.

The steps in the reformatting strategy are:

• Creating a worktable

• Inserting the needed columns from the qualifying rows

• Creating a clustered index on the join columns of the worktable 

• Using the clustered index in the join to retrieve the qualifying rows 
from each table

The main cost of the reformatting strategy is the time and I/O necessary to 
create the worktable and to build the clustered index on the worktable. 
Adaptive Server uses reformatting only when the reformatting cost is less 
than the cost of a merge join or repeated table scans.

A showplan message indicates when Adaptive Server is using the 
reformatting strategy and includes other messages showing the steps used 
to build the worktables. 

See “Reformatting Message” on page 809.

Subquery optimization
Subqueries use the following optimizations to improve performance:

• Flattening – converting the subquery to a join

• Materializing – storing the subquery results in a worktable

• Short circuiting – placing the subquery last in the execution order

• Caching subquery results – recording the results of executions

The following sections explain these strategies.

 See “showplan messages for subqueries” on page 819 for an explanation 
of the showplan messages for subquery processing.



Subquery optimization 

494  

Flattening in, any, and exists subqueries
Adaptive Server can flatten some quantified predicate subqueries to a join. 
Quantified predicate subqueries are introduced with in, any, or exists. Each 
result row in the outer query is returned once, and only once, if the 
subquery condition evaluates to TRUE. 

When flattening can be done

• For any level of nesting of subqueries, for example:

select au_lname, au_fname 
from authors 
where au_id in 
   (select au_id 
    from titleauthor 
    where title_id in 
       (select title_id 
        from titles 
        where type = "popular_comp") )

• For multiple subqueries in the outer query, for example:

select title, type 
from titles 
where title in 
   (select title 
    from titles, titleauthor, authors 
    where titles.title_id = titleauthor.title_id 
    and titleauthor.au_id = authors.au_id 
    and authors.state = "CA") 
and title in 
   (select title 
    from titles, publishers 
    where titles.pub_id = publishers.pub_id 
    and publishers.state = "CA") 

Exceptions to flattening

A subquery introduced with in, any, or exists cannot be flattened if one of 
the following is true:

• The subquery is correlated and contains one or more aggregates.

• The subquery is in the select list or in the set clause of an update 
statement.



CHAPTER 21    Accessing Methods and Costing for Joins and Subqueries

495

• The subquery is connected to the outer query with or.

• The subquery is part of an isnull predicate.

• The subquery is the outermost subquery in a case expression.

If the subquery computes a scalar aggregate, materialization rather than 
flattening is used. 

See “Materializing subquery results” on page 499.

Flattening methods

Adaptive Server uses one of these flattening methods to resolve a 
quantified predicate subquery using a join:

• A regular join – if the uniqueness conditions in the subquery mean 
that it returns a unique set of values, the subquery can be flattened to 
use a regular join.

• An existence join, also known as a semi-join – instead of scanning a 
table to return all matching values, an existence join returns TRUE 
when it finds the first matching value and then stops processing. If no 
matching value is found, it returns FALSE.

• A unique reformat – the subquery result set is selected into a 
worktable, sorted to remove duplicates, and a clustered index is built 
on the worktable. The clustered index is used to perform a regular 
join.

• A duplicate elimination sort optimization – the subquery is flattened 
into a regular join that selects the results into a worktable, then the 
worktable is sorted to remove duplicate rows

Join order and flattening methods

A major factor in the choice of flattening method depends on the cost of 
the possible join orders. For example, in a join of t1, t2, and t3:

select * from t1, t2
where t1.c1 = t2.c1
and t2.c2 in (select c3 from t3)

If the cheapest join order is t1, t2, t3 or t2, t1, t3, a regular joinor or an 
existence join is used. However, if it is cheaper to perform the join with t3 
as the outer table, say, t3, t1, t2, a unique reformat or duplicate elimination 
sort is used.



Subquery optimization 

496  

The resulting flattened join can include nested-loop joins or merge joins. 
When an existence join is used, merge joins can be performed only before 
the existence join. 

Flattened subqueries executed as regular joins

Quantified predicate subqueries can be executed as normal joins when the 
result set of the subquery is a set of unique values. For example, if there is 
a unique index on publishers.pub_id, this single-table subquery is 
guaranteed to return a set of unique values:

select title
from titles
where pub_id in (select pub_id
    from publishers
    where state = "TX")

With a nonunique index on publishers.city, this query can also be executed 
using a regular join:

select au_lname 
from authors a 
where exists (select city 
        from publishers p where p.city = a.city)

Although the index on publishers.city is not unique, the join can still be 
flattened to a normal join if the index is used to filter duplicate rows from 
the query.

When a subquery is flattened to a normal join, showplan output shows a 
normal join. If filtering is used, showplan output is not different; the only 
diagnostic message is in dbcc traceon(310) output, where the method for 
the table indicates “NESTED ITERATION with Tuple Filtering.”

Flattened subqueries executed as existence joins

All in, any, and exists queries test for the existence of qualifying values and 
return TRUE as soon as a matching row is found.

The optimizer converts the following subquery to an existence join:

select title 
    from titles
    where title_id in 
        (select title_id 
         from titleauthor)
    and title like "A Tutorial%"



CHAPTER 21    Accessing Methods and Costing for Joins and Subqueries

497

The existence join query looks like the following ordinary join, although 
it does not return the same results:

select title 
    from titles T, titleauthor TA
    where T.title_id = TA.title_id
        and title like "A Tutorial%"

In the pubtune database, two books match the search string on title. Each 
book has multiple authors, so it has multiple entries in titleauthor. A regular 
join returns five rows, but the subquery returns only two rows, one for each 
title_id, since it stops execution of the join at the first matching row.

When subqueries are flattened to use existence joins, the showplan output 
shows output for a join, with the message “EXISTS TABLE: nested 
iteration” as the join type for the table in the subquery. 

Flattened subqueries executed using unique reformatting

To perform unique reformatting, Adaptive Server:

• Selects rows into a worktable and sorts the worktable, removing 
duplicates and creating a clustered index on the join key.

• Joins the worktable with the next table in the join order. If there is a 
nonunique index on publishers.pub_id, this query can use a unique 
reformat strategy:

select title_id 
from titles 
where pub_id in
(select pub_id from publishers where state = 
"TX")

This query is executed as:

select pub_id 
into #publishers 
from publishers 
where state = "TX"

And after the sort removes duplicates and creates the clustered index:

select title_id 
from titles, #publishers
where titles.pub_id = #publishers.pub_id



Subquery optimization 

498  

showplan messages for unique reformatting show “Worktable created for 
REFORMATTING” in Step 1, and “Using Clustered Index” on the 
worktable in Step 2. 

dbcc traceon(310) displays “REFORMATTING with Unique 
Reformatting” for the method for the publishers table.

Flattened subqueries using duplicate elimination

When it is cheaper to place the subquery tables as outer tables in the join 
order, the query is executed by:

• Performing a regular join with the subquery flattened into the outer 
query, placing results in a worktable.

• Sorting the worktable to remove duplicates.

For example, salesdetail has duplicate values for title_id, and it is used in 
this subquery:

select  title_id, au_id, au_ord
from titleauthor ta
where title_id in (select ta.title_id 
    from titles t, salesdetail sd
    where t.title_id = sd.title_id
    and ta.title_id = t.title_id
    and type = ’travel’ and qty > 10)

If the best join order for this query is salesdetail, titles, titleauthor, the 
optimal join order can be used by:

• Selecting all of the query results into a worktable

• Removing the duplicates from the worktable and returning the results 
to the user

showplan Messages for Flattened Subqueries Performing Sorts

showplan output includes two steps for subqueries that use normal joins 
plus a sort. The first step shows “Worktable1 created for DISTINCT” and 
the flattened join. The second step shows the sort and select from the 
worktable. 

dbcc traceon(310) prints a message for each join permutation when a table 
or tables from a quantified predicate subquery is placed first in the join 
order. Here is the output when the join order used for the query above is 
considered:

2 - 0 - 1 -



CHAPTER 21    Accessing Methods and Costing for Joins and Subqueries

499

This join order created while converting an exists 
join to a regular join, which can happen for 
subqueries, referential integrity, and select 
distinct.

Flattening expression subqueries
Expression subqueries are included in a query’s select list or that are 
introduced by >, >=, <, <=, =, or !=. Adaptive Server converts, or flattens, 
expression subqueries to equijoins if:

• The subquery joins on unique columns or returns unique columns, and 

• There is a unique index on the columns.

Materializing subquery results
In some cases, a subquery is processed in two steps: the results from the 
inner query are materialized, or stored in a temporary worktable or internal 
variable, before the outer query is executed. The subquery is executed in 
one step, and the results of this execution are stored and then used in a 
second step. Adaptive Server materializes these types of subqueries:

• Noncorrelated expression subqueries

• Quantified predicate subqueries containing aggregates where the 
having clause includes the correlation condition

Noncorrelated expression subqueries

Noncorrelated expression subqueries must return a single value. When a 
subquery is not correlated, it returns the same value, regardless of the row 
being processed in the outer query. The query is executed by:

• Executing the subquery and storing the result in an internal variable.

• Substituting the result value for the subquery in the outer query.

The following query contains a noncorrelated expression subquery:

select title_id
from titles
where total_sales = (select max(total_sales)



Subquery optimization 

500  

                    from ts_temp)

Adaptive Server transforms the query to:

select <internal_variable> = max(total_sales)
    from ts_temp
select title_id
    from titles
    where total_sales = <internal_variable>

The search clause in the second step of this transformation can be 
optimized. If there is an index on total_sales, the query can use it. The total 
cost of a materialized expression subquery is the sum of the cost of the two 
separate queries. 

Quantified predicate subqueries containing aggregates

Some subqueries that contain vector (grouped) aggregates can be 
materialized. These are:

• Noncorrelated quantified predicate subqueries

• Correlated quantified predicate subqueries correlated only in the 
having clause 

The materialization of the subquery results in these two steps:

• Adaptive Server executes the subquery first and stores the results in a 
worktable.

• Adaptive Server joins the outer table to the worktable as an existence 
join. In most cases, this join cannot be optimized because statistics for 
the worktable are not available.

Materialization saves the cost of evaluating the aggregates once for each 
row in the table. For example, this query:

select title_id
from titles
where total_sales in (select max(total_sales)
                     from titles
                     group by type)

Executes in these steps:

select maxsales = max(total_sales)
    into #work
    from titles
    group by type
select title_id



CHAPTER 21    Accessing Methods and Costing for Joins and Subqueries

501

    from titles, #work
    where total_sales = maxsales

The total cost of executing quantified predicate subqueries is the sum of 
the query costs for the two steps.

When there are where clauses in addition to a subquery, Adaptive Server 
executes the subquery or subqueries last to avoid unnecessary executions 
of the subqueries. Depending on the clauses in the query, it is often 
possible to avoid executing the subquery because less expensive clauses 
can determine whether the row is to be returned:

• If any and clauses evaluate to FALSE, the row will not be returned.

• If any or clauses evaluate to TRUE, the row will be returned.

In both cases, as soon as the status of the row is determined by the 
evaluation of one clause, no other clauses need to be applied to that row. 
This provides a performance improvement, because expensive subqueries 
need to be executed less often.

Subquery introduced with an and clause
When and joins the clauses, evaluation stops as soon as any clause 
evaluates to FALSE. The row is skipped.

This query contains two and clauses, in addition to the correlated 
subquery:

select au_fname, au_lname, title, royaltyper
from titles t, authors a, titleauthor ta
where t.title_id = ta.title_id
and a.au_id = ta.au_id
and advance >= (select avg(advance) 
                        from titles t2 
                        where t2.type = t.type)
and price > $100
and au_ord = 1

Adaptive Server orders the execution steps to evaluate the subquery last, 
after it evaluates the conditions on price and au_ord. If a row does not meet 
an and condition, Adaptive Server discards the row without checking any 
more and conditions and begins to evaluate the next row, so the subquery 
is not processed unless the row meets all of the and conditions.



Subquery optimization 

502  

Subquery introduced with an or clause
If a query’s where conditions are connected by or, evaluation stops when 
any clause evaluates to TRUE, and the row is returned.

This query contains two or clauses in addition to the subquery:

select au_fname, au_lname, title
from titles t, authors a, titleauthor ta
where t.title_id = ta.title_id
and a.au_id = ta.au_id
and (advance > (select avg(advance) 
                    from titles t2
                    where t.type = t2.type)
or title = "Best laid plans"
or price > $100)

Adaptive Server orders the conditions in the query plan to evaluate the 
subquery last. If a row meets the condition of the or clause, Adaptive 
Server returns the row without executing the subquery, and proceeds to 
evaluate the next row. 

Subquery results caching
When it cannot flatten or materialize a subquery, Adaptive Server uses an 
in-memory cache to store the results of each evaluation of the subquery. 
While the query runs, Adaptive Server tracks the number of times a 
needed subquery result is found in cache. This is called a cache hit ratio. 
If the cache hit ratio is high, it means that the cache is reducing the number 
of times that the subquery executes. If the cache hit ratio is low, the cache 
is not useful, and it is reduced in size as the query runs.

Caching the subquery results improves performance when there are 
duplicate values in the join columns or the correlation columns. It is even 
more effective when the values are ordered, as in a query that uses an 
index. Caching does not help performance when there are no duplicate 
correlation values.

Displaying subquery cache information

The set statistics subquerycache on command displays the number of cache 
hits and misses and the number of rows in the cache for each subquery. The 
following example shows subquery cache statistics: 

set statistics subquerycache on



CHAPTER 21    Accessing Methods and Costing for Joins and Subqueries

503

select type, title_id
from titles
where price > all
    (select price
        from titles
        where advance < 15000)
Statement: 1  Subquery: 1  cache size: 75  hits: 4925  
misses: 75

If the statement includes subqueries on either side of a union, the 
subqueries are numbered sequentially through both sides of the union. 

Optimizing subqueries
When queries containing subqueries are not flattened or materialized:

• The outer query and each unflattened subquery are optimized one at a 
time.

• The innermost subqueries (the most deeply nested) are optimized 
first.

• The estimated buffer cache usage for each subquery is propagated 
outward to help evaluate the I/O cost and strategy of the outer queries.

In many queries that contain subqueries, a subquery is “nested over” to 
one of the outer table scans by a two-step process. First, the optimizer finds 
the point in the join order where all the correlation columns are available. 
Then, the optimizer searches from that point to find the table access that 
qualifies the fewest rows and attaches the subquery to that table. The 
subquery is then executed for each qualifying row from the table it is 
nested over.



or Clauses versus unions in joins 

504  

or Clauses versus unions in joins
Adaptive Server cannot optimize join clauses that are linked with or and it 
may perform Cartesian products to process the query. 

Note  Adaptive Server optimizes search arguments that are linked with or. 
This description applies only to join clauses.

For example, when Adaptive Server processes this query, it must look at 
every row in one of the tables for each row in the other table:

select * 
    from tab1, tab2
    where tab1.a = tab2.b
        or tab1.x = tab2.y

If you use union, each side of the union is optimized separately:

    select * 
        from tab1, tab2
        where tab1.a = tab2.b
union all
    select * 
        from tab1, tab2
        where tab1.x = tab2.y

You can use union instead of union all to eliminate duplicates, but this 
eliminates all duplicates. You may not get exactly the same set of 
duplicates from the rewritten query.

Adaptive Server can optimize selects with joins that are linked with union. 
The result of or is somewhat like the result of union, except for the 
treatment of duplicate rows and empty tables:

• union removes all duplicate rows (in a sort step); union all does not 
remove any duplicates. The comparable query using or might return 
some duplicates.

• A join with an empty table returns no rows.



505

C H A P T E R  2 2 Parallel Query Processing

This chapter introduces basic concepts and terminology needed for 
parallel query optimization, parallel sorting, and other parallel query 
topics, and provides an overview of the commands for working with 
parallel queries.

Other chapters that cover specific parallel processing topics in more depth 
include:

• For details on how the Adaptive Server optimizer determines 
eligibility and costing for parallel execution, see Chapter 23, 
“Parallel Query Optimization.” 

• To understand parallel sorting topics, see Chapter 24, “Parallel 
Sorting.” 

• For information on object placement for parallel performance, see 
“Partitioning tables for performance” on page 85.

• For information about locking behavior during parallel query 
processing, see System Administration Guide

• For information on showplan messages, see “showplan messages for 
parallel queries” on page 814.

• To understand how Adaptive Server uses multiple engines, see 
Chapter 3, “Using Engines and CPUs.”

Topic Page
Types of queries that can benefit from parallel processing 506

Adaptive Server’s worker process model 507

Types of parallel data access 511

Controlling the degree of parallelism 516

Commands for working with partitioned tables 522

Balancing resources and performance 525

Guidelines for parallel query configuration 526

System level impacts 531

When parallel query results can differ 533



Types of queries that can benefit from parallel processing 

506  

Types of queries that can benefit from parallel 
processing

When Adaptive Server is configured for parallel query processing, the 
optimizer evaluates each query to determine whether it is eligible for 
parallel execution. If it is eligible, and if the optimizer determines that a 
parallel query plan can deliver results faster than a serial plan, the query is 
divided into components that are processed simultaneously. The results are 
combined and delivered to the client in a shorter period of time than it 
would take to process the query serially as a single component.

Parallel query processing can improve the performance of the following 
types of queries:

• select statements that scan large numbers of pages but return 
relatively few rows, such as:

• Table scans or clustered index scans with grouped or ungrouped 
aggregates

• Table scans or clustered index scans that scan a large number of 
pages, but have where clauses that return only a small percentage 
of the rows

• select statements that include union, order by, or distinct, since these 
queries can populate worktables in parallel, and can make use of 
parallel sorting

• select statements that use merge joins can use parallel processing for 
scanning tables and for performing the sort and merge steps

• select statements where the reformatting strategy is chosen by the 
optimizer, since these can populate worktables in parallel, and can 
make use of parallel sorting

• create index statements, and the alter table...add constraint clauses that 
create indexes, unique and primary key 

• The dbcc checkstorage command

Join queries can use parallel processing on one or more tables.

Commands that return large, unsorted result sets are unlikely to benefit 
from parallel processing due to network constraints—in most cases, 
results can be returned from the database faster than they can be merged 
and returned to the client over the network.



CHAPTER 22    Parallel Query Processing

507

Commands that modify data (insert, update, and delete), and cursors do not 
run in parallel. The inner, nested blocks of queries containing subqueries 
are never executed in parallel, but the outer block can be executed in 
parallel.

Decision support system (DSS) queries that access huge tables and return 
summary information benefit the most from parallel query processing. The 
overhead of allocating and managing parallel queries makes parallel 
execution less effective for online transaction processing (OLTP) queries, 
which generally access fewer rows and join fewer tables. When a server is 
configured for parallel processing, only queries that access 20 data pages 
or more are considered for parallel processing, so most OLTP queries run 
in serial. 

Adaptive Server’s worker process model
Adaptive Server uses a coordinating process and multiple worker 
processes to execute queries in parallel. A query that runs in parallel with 
eight worker processes is much like eight serial queries accessing one-
eighth of the table, with the coordinating process supervising the 
interaction and managing the process of returning results to the client. 
Each worker process uses approximately the same amount of memory as 
a user connection. Each worker process runs as a task that must be 
scheduled on an engine, scans data pages, queues disk I/Os, and performs 
in many ways like any other task on the server. One major difference is that 
in last phase of query processing, the coordinating process manages 
merging the results and returning them to the client, coordinating with 
worker processes.

Figure 22-1 shows the events that take place during parallel query 
processing:

1 The client submits a query.

2 The client task assigned to execute the query becomes the 
coordinating process for parallel query execution.

3 The coordinating process requests four worker processes from the 
pool of worker processes. The coordinating process together with the 
worker processes is called a family.

4 The worker processes execute the query in parallel. 



Adaptive Server’s worker process model 

508  

5 The coordinating process returns the results produced by all the 
worker processes.

The serial client shown in the lower-right corner of Figure 22-1 submits a 
query that is processed serially.

Figure 22-1: Worker process model

During query processing, the tasks are tracked in the system tables by a 
family ID (fid). Each worker process for a family has the same family ID 
and its own unique server process ID (spid). System procedures such as 
sp_who and sp_lock display both the fid and the spid for parallel queries, 
allowing you to observe the behavior of all processes in a family.

Query

1. Parallel client

Adaptive Server

4. Worker processes

5. Results returned

2. 
Clie

nt 
tas

k b
ec

om
es

3. Request for
worker 
processes

 Pool of worker processes

scan the table in
parallel

co
or

din
ati

ng
 pr

oc
es

s

Serial client

Task 1 Query

Result



CHAPTER 22    Parallel Query Processing

509

Parallel query execution
Figure 22-2 shows how parallel query processing reduces response time 
over the same query running in serial. In parallel execution, three worker 
processes scan the data pages. The times required by each worker process 
may vary, depending on the amount of data that each process needs to 
access. Also, a scan can be temporarily blocked due to locks on data pages 
held by other users. When all of the data has been read, the results from 
each worker process are merged into a single result set by the coordinating 
process and returned to the client.

Figure 22-2: Relative execution times for serial and parallel query 
execution

The total amount of work performed by the query running in parallel is 
greater than the amount of work performed by the query running in serial, 
but the response time is shorter.

Merge and Parse,
optimize,
compile

Data access

Serial execution 
of a group by query

time

Return 
results

Parse,
optimize,
compile

Data access

return results

Parallel 
execution of the 
same query with 
3 worker 
processes

Coordinating process

Worker process

Worker process

Worker process



Adaptive Server’s worker process model 

510  

Returning results from parallel queries
Results from parallel queries are returned through one of three merge 
strategies, or as the final step in a sort. Parallel queries that do not have a 
final sort step use one of these merge types:

• Queries that contain a vector (grouped) aggregate use worktables to 
store temporary results; the coordinating process merges the results 
into one worktable and returns results to the client.

• Queries that contain a scalar (ungrouped) aggregate use internal 
variables, and the coordinating process performs the final 
computations to return the results to the client.

• Queries that do not contain aggregates and that do not use clauses that 
do not require a final sort can return results to the client as the tables 
are being scanned. Each worker process stores results in a result 
buffer and uses address locks to coordinate transferring the results to 
the network buffers for the task.

More than one merge type can be used when queries require several steps 
or multiple worktables.

See “showplan messages for parallel queries” on page 814 for more 
information on merge messages.

For parallel queries that include an order by clause, distinct, or union, 
results are stored in a worktable in tempdb, then sorted. If the sort can 
benefit from parallel sorting, a parallel sort is used, and results are returned 
to the client during the final merge step performed by the sort.

For more information on how parallel sorts are performed, see Chapter 24, 
“Parallel Sorting.”

Note  Since parallel queries use multiple processes to scan data pages, 
queries that do not use aggregates and do not include a final sort step may 
return results in different order than serial queries and may return different 
results for queries with set rowcount in effect and for queries that select 
into a local variable. 

For details and solutions, see “When parallel query results can differ” on 
page 533.



CHAPTER 22    Parallel Query Processing

511

Types of parallel data access
Adaptive Server accesses data in parallel in different ways, depending 
configuration parameter settings, table partitioning, and the availability of 
indexes. The optimizer may choose a mix of serial and parallel methods 
for queries that involve multiple tables or multiple steps. Parallel methods 
include:

• Hash-based table scans

• Hash-based nonclustered index scans

• Partition-based scans, either full table scans or scans positioned with 
a clustered index

• Range-based scans during merge joins

The following sections describe some of the methods. 

For more examples, see Chapter 23, “Parallel Query Optimization.”

Figure 22-3 shows a scan on an allpages-locked table executed in serial by 
a single task. The task follows the table’s page chain to read each page, 
stopping to perform physical I/O when needed pages are not in the cache. 

Figure 22-3: A serial task scans data pages

 7T1

Single page chain



Types of parallel data access 

512  

Hash-based table scans
Figure 22-4 shows how three worker processes divide the work of 
accessing data pages from an allpages-locked table during a hash-based 
table scan. Each worker process performs a logical I/O on every page, but 
each process examines rows on only one-third of the pages, as indicated 
by the differently shaded pages. Hash-based table scans are used only for 
the outer query in a join.

With only one engine, the query still benefits from parallel access because 
one worker process can execute while others wait for I/O. If there are 
multiple engines, some of the worker processes could be running 
simultaneously. 

Figure 22-4: Worker processes scan an unpartitioned table

Hash-based table scans increase the logical I/O for the scan, since each 
worker process must access each page to hash on the page ID. For data-
only-locked tables, hash-based table scans hash either on the extent ID or 
the allocation page ID, so that only a single worker process scans a page, 
and logical I/O does not increase.

Multiple worker processes

WP2
WP3

Single Page ChainWP1



CHAPTER 22    Parallel Query Processing

513

Partition-based scans
Figure 22-5 shows how a query scans a table that has three partitions on 
three physical disks. With a single engine, this query can benefit from 
parallel processing because one worker process can execute while others 
sleep waiting for I/O or waiting for locks held by other processes to be 
released. If multiple engines are available, the worker processes can run 
simultaneously. This configuration can yield high parallel performance by 
providing I/O parallelism. 

Figure 22-5: Multiple worker processes access multiple partitions

Hash-based index scans
Figure 22-6 shows a hash-based index scan. Hash-based index scans can 
be performed using nonclustered indexes or clustered indexes on data-
only-locked tables. Each worker process navigates higher levels of the 
index and reads the leaf-level pages of the index. Each worker process 
then hashes on either the data page ID or the key value to determine which 
data pages or data rows to process. Reading every leaf page produces 
negligible overhead. 

data_dev1 data_dev2 data_dev3

 7WP1 WP2 WP3

Table on 3 
partitions 



Types of parallel data access 

514  

Figure 22-6: Hash-based, nonclustered index scan

Parallel processing for two tables in a join
Figure 22-7 shows a nested-loop join query performing a partition-based 
scan on a table with three partitions, and a hash-based index scan, with two 
worker processes on the second table. When parallel access methods are 
used on more than one table in a nested-loop join, the total number of 
worker processes required is the product of worker process for each scan. 
In this case, six workers perform the query, with each worker process 
scanning both tables. Two worker processes scan each partition in the first 
table, and all six worker processes navigate the index tree for the second 
table and scan the leaf pages. Each worker process accesses the data pages 
that correspond to its hash value.

The optimizer chooses a parallel plan for a table only when a scan returns 
20 pages or more. These types of join queries require 20 or more matches 
on the join key for the inner table in order for the inner scan to be 
optimized in parallel. 

Index Pages

Data Pages

WP2 WP3 7WP1

Pages read by worker process 1

Pages read by worker process 2

Pages read by worker process 3



CHAPTER 22    Parallel Query Processing

515

Figure 22-7: Join query using different parallel access methods on 
each table

showplan messages
showplan prints the degree of parallelism each time a table is accessed in 
parallel. The following example shows the messages for each table in the 
join in Figure 22-7:

data_dev1 data_dev2 data_dev3

 7WP1 WP2 WP3

Index Pages

Data Pages

 7WP4 WP5 WP6

Table1: 
Partitioned table 
on 3 devices

Table2: 
Nonclustered index 
with more than 20 
matching rows for 
each join key



Controlling the degree of parallelism 

516  

Executed in parallel with a 2-way hash scan.
Executed in parallel with a 3-way partition scan.

showplan also prints a message showing the total number of worker 
processes used. For the query shown in Figure 22-7, it reports:

Executed in parallel by coordinating process and 6 
worker processes.

See “showplan messages for parallel queries” on page 814 for more 
information and Chapter 23, “Parallel Query Optimization,” for 
additional examples.

Controlling the degree of parallelism
A parallel query’s degree of parallelism is the number of worker 
processes used to execute the query. This number depends on several 
factors, including:

• The values to which of the parallel configuration parameters or the 
session-level limits,

(see Table 22-1 and Table 22-2)

• The number of partitions on a table (for partition-based scans)

• The level of parallelism suggested by the optimizer

• The number of worker processes that are available at the time the 
query executes. 

You can establish limits on the degree of parallelism:

• Server-wide – using sp_configure with parameters shown in Table 22-
1. Only a System Administrator can use sp_configure.

• For a session – using set with the parameters shown in Table 22-2. All 
users can run set; it can also be included in stored procedures.

• In a select query – using the parallel clause, as shown in “Controlling 
parallelism for a query” on page 520.



CHAPTER 22    Parallel Query Processing

517

Configuration parameters for controlling parallelism
The configuration parameters that give you control over the degree of 
parallelism server-wide are shown in Table 22-1. 

Table 22-1: Configuration parameters for parallel execution

Configuring number of worker processes affects the size of the data and 
procedure cache, so you may want to change the value of total memory 
also. 

For more information see the System Administration Guide.

When you change max parallel degree or max scan parallel degree, all 
query plans in cache are invalidated, so the next execution of any stored 
procedure or trigger recompiles the plan and uses the new values.

How limits apply to query plans

When queries are optimized, the configuration parameters affect query 
plans.

• max parallel degree limits:

• The number of worker processes for a partition-based scan

• The total combined number of worker processes for nested-loop 
join queries, where parallel access methods are used on more 
than one table

• The number of worker processes used for the merge and sort 
steps in merge joins

• The number of worker processes that can be used by parallel sort 
operations

Parameter Explanation Comment

number of worker processes The maximum number of worker processes available for 
all parallel queries. Each worker process requires 
approximately as much memory as a user connection.

Restart of server 
required

max parallel degree The number of worker processes that can be used by a 
single query. It must be equal to or less than number of 
worker processes and equal to or greater than max scan 
parallel degree.

Dynamic, no 
restart required

max scan parallel degree The maximum number of worker processes that can be 
used for a hash scan. It must be equal to or less than 
number of worker processes and max parallel degree.

Dynamic, no 
restart required



Controlling the degree of parallelism 

518  

• max scan parallel degree limits the number of worker processes for 
hash-based table scans and index scans.

How the limits work in combination

You might configure number of worker processes to 50 to allow multiple 
parallel queries to operate at the same time. If the table with the largest 
number of partitions has 10 partitions, you might set max parallel degree to 
10, limiting all select queries to a maximum of 10 worker processes. Since 
hash-based scans operate best with 2–3 worker processes, max scan 
parallel degree could be set to 3. 

For a single-table query, or a join involving serial access on other tables, 
some of the parallel possibilities allowed by these values are:

• Parallel partition scans on any tables with 2–10 partitions 

• Hash-based table scans with up to 3 worker processes 

• Hash-based nonclustered index scans on tables with nonclustered 
indexes, with up to 3 worker processes

For nested-loop joins where parallel methods are used on more than one 
table, some possible parallel choices are:

• Joins using a hash-based scan on one table and partitioned-based 
scans on tables with 2 or 3 partitions

• Joins using partition- based scans on both tables. For example:

• A parallel degree of 3 for a partitioned table multiplied by max 
scan parallel degree of 3 for a hash-based scan requires 9 worker 
processes. 

• A table with 2 partitions and a table with 5 partitions requires 10 
worker processes for partition-based scans on both tables.

• Tables with 4–10 partitions can be involved in a join, with one or 
more tables accessed in serial.

For merge joins:

• For a full-merge join, 10 worker processes scan the base tables (unless 
these are fewer than 10 distinct values on the join keys); the number 
of partitions on the tables is not considered.

• For a merge join that scans a table and selects rows into a worktable:



CHAPTER 22    Parallel Query Processing

519

• The scan that precedes the merge join may be performed in serial 
or in parallel. The degree of parallelism is determined in the usual 
way for such a query.

• For the merge, 10 worker processes are used unless there are 
fewer distinct values in the join key.

• For the sort, up to 10 worker processes can be used.

For fast performance, while creating a clustered index on a table with 10 
partitions, the setting of 50 for number of worker processes allows you to 
set max parallel degree to 20 for the create index command.

For more information on configuring worker processes for sorting, see 
“Worker process requirements for parallel sorts” on page 581.

Examples of setting parallel configuration parameters

The following command sets number of worker processes:

sp_configure "number of worker processes", 50

After a restart of the server, these commands set the other configuration 
parameters:

sp_configure "max parallel degree", 10
sp_configure "max scan parallel degree", 3

To display the current settings for these parameters, use:

sp_configure "Parallel Query"

Using set options to control parallelism for a session
Two set options let you restrict the degree of parallelism on a session basis 
or in stored procedures or triggers. These options are useful for tuning 
experiments with parallel queries and can also be used to restrict 
noncritical queries to run in serial, so that worker processes remain 
available for other tasks. The set options are summarized in Table 22-2.

Table 22-2: set options for parallel execution tuning

Parameter Function

parallel_degree Sets the maximum number of worker processes for a query in a session, stored 
procedure, or trigger. Overrides the max parallel degree configuration parameter, 
but must be less than or equal to the value of max parallel degree.



Controlling the degree of parallelism 

520  

If you specify a value that is too large for set either option, the value of the 
corresponding configuration parameter is used, and a message reports the 
value in effect. While set parallel_degree or set scan_parallel_degree is in 
effect during a session, the plans for any stored procedures that you 
execute are not placed in the procedure cache. Procedures executed with 
these options in effect may produce suboptimal plans.

set command examples

This example restricts all queries started in the current session to 5 worker 
processes:

set parallel_degree 5

While this command is in effect, any query on a table with more than 5 
partitions cannot use a partition-based scan.

To remove the session limit, use:

set parallel_degree 0
or
set scan_parallel_degree 0

To run subsequent queries in serial mode, use:

set parallel_degree 1
or
set scan_parallel_degree 1

Controlling parallelism for a query
The parallel extension to the from clause of a select command allows users 
to suggest the number of worker processes used in a select statement. The 
degree of parallelism that you specify cannot be more than the value set 
with sp_configure or the session limit controlled by a set command. If you 
specify a higher value, the specification is ignored, and the optimizer uses 
the set or sp_configure limit.

The syntax for the select statement is: 

scan_parallel_degree Sets the maximum number of worker processes for a hash-based scan during a 
specific session, stored procedure, or trigger. Overrides the max scan parallel 
degree configuration parameter but must be less than or equal to the value of max 
scan parallel degree.

Parameter Function



CHAPTER 22    Parallel Query Processing

521

select ...
from tablename [( [index index_name] 
     [parallel [degree_of_parallelism | 1 ]]
     [prefetch size] [lru|mru] ) ]  ,
   tablename [( [index index_name] 
     [parallel [degree_of_parallelism | 1] 
     [prefetch size] [lru|mru] ) ]  ...

Query level parallel clause examples

To specify the degree of parallelism for a single query, include parallel after 
the table name. This example executes in serial:

select * from huge_table (parallel 1)

This example specifies the index to use in the query, and sets the degree of 
parallelism to 2:

select * from huge_table (index ncix parallel 2)

See “Suggesting a degree of parallelism for a query” on page 419 for 
more information.

Worker process availability and query execution
At runtime, if the number of worker processes specified in the query plan 
is not available, Adaptive Server creates an adjusted query plan to execute 
the query using fewer worker processes. This is called a runtime 
adjustment, and it can result in serial execution of the query.

A runtime adjustment now and then probably indicates an occasional, 
momentary bottleneck. Frequent runtime adjustments indicate that the 
system may not be configured with enough worker processes for the 
workload. 

See “Runtime adjustments to worker processes” on page 559 for more 
information. 

You can also use the set process_limit_action option to control whether a 
query or stored procedure should silently use an adjusted plan, whether it 
should warn the user, or whether the command should fail if it cannot use 
the optimal number of worker processes.

See “Using set process_limit_action” on page 569 for more information.

Runtime adjustments are transparent to end users, except:



Commands for working with partitioned tables 

522  

• A query that normally runs in parallel may perform very slowly in 
serial.

• If set process_limit_action is in effect, they may get a warning, or the 
query may be aborted, depending on the setting.

Other configuration parameters for parallel processing
Two additional configuration parameters for parallel query processing are:

• number of sort buffers – configures the maximum number of buffers 
that parallel sort operations can use from the data cache.

See “Caches, sort buffers, and parallel sorts” on page 585.

• memory per worker process – establishes a pool of memory that all 
worker processes use for messaging during query processing. The 
default value, 1024 bytes per worker process, provides ample space in 
almost all cases, so this value should not need to be reset.

See “Worker process management” on page 914 for information on 
monitoring and tuning this value.

Commands for working with partitioned tables
Detailed steps for partitioning tables, placing them on specific devices, 
and loading data with parallel bulk copy are in Chapter 5, “Controlling 
Physical Data Placement.” The commands and tasks for creating, 
managing, and maintaining partitioned tables are:

• alter database – to make devices available to the database.

• sp_addsegment – to create a segment on a device; sp_extendsegment 
to extend the segment over additional devices, and sp_dropsegment to 
drop the log and system segments from data devices.

• create table...on segment_name – to create a table on a segment.

• alter table...partition and alter table...unpartition – to add or remove 
partitioning from a table.

• create clustered index – to distribute the data evenly across the table’s 
partitions.



CHAPTER 22    Parallel Query Processing

523

• bcp (bulk copy) – with the partition number added after the table 
name, to copy data into specific table partitions.

• sp_helpartition – to display the number of partitions and the 
distribution of data in partitions, and sp_helpsegment to check the 
space used on each device in a segment and on the segment as a 
whole.

Figure 22-8 shows a scenario for creating a new partitioned table.



Commands for working with partitioned tables 

524  

Figure 22-8: Steps for creating and loading a new partitioned table

T10 cooking 6.95 A Unified Approach to...
T10001 cooking  42.95 Scheme for an internet...
T10007 cooking 47.95 Internet Protocol Ha...
T10023 cooking 46.95 Proposed change in P...
T10029 cooking 74.95 System Summary for...
T10032 fiction 35.95 Cyberpunk
T10035 cooking 49.95 Achieving reliable coo...
T10038 cooking 12.95 Reliable Recipes
T25355 business 69.95 Plan and schedule
T39076 psychology 10.95 Reallocation and Urb...
T56358 UNDECIDED 39.95 New title
T75542 romance 44.95 Rosalie’s Romance
T10056 cooking 1.95 Brave New Cookery
T25361 business 42.95 Network Nuisance
T39082 psychology 6.95 On the problem...
authentication for network mail

alter database makes devices available to 
the database.

sp_addsegment creates a segment on a 
device, sp_extendsegment extends the 
segment over additional devices, and 
sp_dropsegment drops log and system 
segments from data devices.

create table...on segment_name creates 
the table on the segment.

alter table...partition creates a partition on 
each device.

Parallel bulk copy loads data into 
each partition from an input data 
file.



CHAPTER 22    Parallel Query Processing

525

Balancing resources and performance
Maximum parallel performance requires multiple CPUs and multiple I/O 
devices to achieve I/O parallelism. As with most performance 
configuration, parallel systems reach a point of diminishing returns, and a 
later point where additional resources do not yield performance 
improvement.

You need to determine whether queries are CPU-intensive or I/O-intensive 
and when your performance is blocked by CPU saturation or I/O 
bottlenecks. If CPU utilization is low, spreading a table across more 
devices and using more worker processes increases CPU utilization and 
provides improved response time. Conversely, if CPU utilization is 
extremely high, but the I/O system is not saturated, increasing the number 
of CPUs can provide performance improvement.

CPU resources
Without an adequate number of engines (CPU resources), tasks and 
worker processes must wait for access to Adaptive Server engines, and 
response time can be slow. Many factors determine the number of engines 
needed by the system, such as whether the query is CPU intensive or I/O 
intensive, or, at different times, both:

• Worker processes tend to spend time waiting for disk I/O and other 
system resources while other tasks are active on the CPU.

• Queries that perform sorts and aggregates tend to be more CPU-
intensive.

• Execution classes and engine affinity bindings on parallel CPU-
intensive queries can have complex effects on the system. If there are 
not enough CPUs, performance for both serial and parallel queries, 
can be degraded.

See Chapter 4, “Distributing Engine Resources,” for more 
information.



Guidelines for parallel query configuration 

526  

Disk resources and I/O
In most cases, configuring the physical layout of tables and indexes on 
devices is the key to parallel performance. Spreading partitions across 
different disks and controllers can improve performance during partition-
based scanning if all of the following conditions are true:

• Data is distributed over different disks.

• Those disks are distributed over different controllers.

• There are enough worker processes available at runtime to allocate 
one worker process for each partition.

Tuning example: CPU and I/O saturation
One experiment on a CPU-bound query found near-linear scaling in 
performance by adding CPUs until the I/O subsystem became saturated. 
At that point, additional CPU resources did not improve performance. The 
query performs a table scan on an 800MB table with 30 partitions, using 
16K I/O. Table 22-3 shows the CPU scaling.

Table 22-3: Scaling of engines and worker processes

Guidelines for parallel query configuration
Parallel processing places very different demands on system resources 
than running the same queries in serial. Two components in planning for 
parallel processing are:

• A good understanding of the capabilities of the underlying hardware 
(especially disk drives and controllers) in use on your system

• A set of performance goals for queries you plan to run in parallel

Engines
Elapsed time,
(in seconds)

CPU 
utilization I/O saturation

Throughput 
per device, 
per second

1 207 100% Not saturated .13MB 

2 100 98.7% Not saturated .27MB 

4 50 98% Not saturated .53MB 

8 27 93% 100% saturated .99MB 



CHAPTER 22    Parallel Query Processing

527

Hardware guidelines
Some guidelines for hardware configuration and disk I/O speeds are:

• Each Adaptive Server engine can support about five worker processes 
before saturating on CPU utilization for CPU-intensive queries. If 
CPU is not saturated at this ratio, and you want to improve parallel 
query performance, increase the ratio of worker processes to engines 
until I/O bandwidth becomes a bottleneck.

• For sequential scans, such as table scans using 16K I/O, it may be 
possible to achieve 1.6MB per second, per device, that is, 100 16K 
I/Os, or 800 pages per second, per device.

• For queries doing random access, such as nonclustered index access, 
the figure is approximately 50 2K I/Os, or 50 pages per second, per 
device.

• One I/O controller can sustain a transfer rate of up to 10–18MB per 
second. This means that one SCSI I/O controller can support up to 
6 –10 devices performing sequential scans. Some high-end disk 
controllers can support more throughput. Check your hardware 
specifications, and use sustained rates, rather than peak rates, for your 
calculations.

• RAID disk arrays vary widely in performance characteristics, 
depending on the RAID level, the number of devices in the stripe set, 
and specific features, such as caching. RAID devices may provide 
better or worse throughput for parallelism than the same number of 
physical disks without striping. In most cases, start your parallel 
query tuning efforts by setting the number of partitions for tables on 
these devices to the number of disks in the array.

Working with your performance goals and hardware guidelines
The following examples use the hardware guidelines and Table 22-3 to 
provide illustrate how to use parallelism to meet performance goals:

• The number of partitions for a table should be less than or equal to the 
number of devices. For the experiment showing scaling of engines 
and worker processes shown in Table 22-3, there were 30 devices 
available, so 30 partitions were used. Performance is optimal when 
each partition is placed on a separate physical device.



Guidelines for parallel query configuration 

528  

• Determine the number of partitions based on the I/O throughput you 
want to achieve. If you know your disks and controllers can sustain 
1MB per second per device, and you want a table scan on an 800MB 
table to complete in 30 seconds, you need to achieve approximately 
27MB per second total throughput, so you would need at least 27 
devices with one partition per device, and at least 27 worker 
processes, one for each partition. These figures are very close to the 
I/O rates in the example in Table 22-3.

• Estimate the number of CPUs, based on the number of partitions, and 
then determine the optimum number by tracking both CPU utilization 
and I/O saturation. The example shown in Table 22-3 had 30 
partitions available. Following the suggestions in the hardware 
guidelines of one CPU for each five devices suggests using six 
engines for CPU-intensive queries. At that level, I/O was not 
saturated, so adding more engines improved response time.

Examples of parallel query tuning
The following examples use the I/O capabilities described in “Hardware 
guidelines” on page 527.

Improving the performance of a table scan

This example shows how a table might be partitioned to meet performance 
goals. Queries that scan whole tables and return a limited number of rows 
are good candidates for parallel performance. An example is this query 
containing group by:

select type, avg(price) 
    from titles
group by type

Here are the performance statistics and tuning goals:

The steps for configuring for parallel operation are:

Table size 48,000 pages

Access method Table scan, 16K I/O

Serial response time 60 seconds

Target performance 6 seconds



CHAPTER 22    Parallel Query Processing

529

• Create 10 partitions for the table, and evenly distribute the data across 
the partitions.

• Set the number of worker processes and max parallel degree 
configuration parameters to at least 10.

• Check that the table uses a cache configured for 16K I/O.

In serial execution, 48,000 pages can be scanned in 60 seconds using 16K 
I/O. In parallel execution, each process scans 1 partition, approximately 
4,800 pages, in about 6 seconds, again using 16K I/O.

Improving the performance of a nonclustered index scan

The following example shows how performance of a query using a 
nonclustered index scan can be improved by configuring for a hash-based 
scan. The performance statistics and tuning goals are:

The steps for configuring for parallel operation are:

• Set max scan parallel degree configuration parameters to 5 to use 5 
worker processes in the hash-based scan.

• Set number of worker processes and max parallel degree to at least 5.

In parallel execution, each worker process scans 300 pages in 6 seconds.

Guidelines for partitioning and parallel degree
Here are some additional guidelines to consider when you are moving 
from serial query execution to parallel execution or considering additional 
partitioning or additional worker processes for a system already running 
parallel queries:

• If the cache hit ratio for a table is more than 90 percent, partitioning 
the table will not greatly improve performance. Since most of the 
needed pages are in cache, there is no benefit from the physical I/O 
parallelism. 

Data pages accessed 1500

Access method Nonclustered index, 2K I/O

Serial response time 30 seconds

Target performance 6 seconds



Guidelines for parallel query configuration 

530  

• If CPU utilization is more than 80 percent, and a high percentage of 
the queries in your system can make use of parallel queries, increasing 
the degree of parallelism may cause CPU saturation. This guideline 
also applies to moving from all-serial query processing to parallel 
query processing, where a large number of queries are expected to 
make use of parallelism. Consider adding more engines, or start with 
a low degree of parallelism.

• If CPU utilization is high, and a few users run large DSS queries while 
most users execute OLTP queries that do not operate in parallel, 
enabling or increasing parallelism can improve response time for the 
DSS queries. However, if response time for OLTP queries is critical, 
start with a low degree of parallelism, or make small changes to the 
existing degree of parallelism.

• If CPU utilization is low, move incrementally toward higher degrees 
of parallelism. On a system with two CPUs, and an average CPU 
utilization of 60 percent, doubling the number of worker processes 
would saturate the CPUs.

• If I/O for the devices is well below saturation, you may be able to 
improve performance for some queries by breaking the one-partition-
per-device guideline. Except for RAID devices, always use a multiple 
of the number of logical devices in a segment for partitioning; that is, 
for a table on a segment with four devices, you can use eight 
partitions. Doubling the number of partitions per device may cause 
extra disk-head movement and reduce I/O parallelism. Creating an 
index on any partitioned table that has more partitions than devices 
prints a warning message that you can ignore in this case. 

Experimenting with data subsets
Parallel query processing can provide the greatest performance gains on 
your largest tables and most I/O-intensive queries. Experimenting with 
different physical layouts on huge tables, however, is extremely time-
consuming. Here are some suggestions for working with smaller subsets 
of data:



CHAPTER 22    Parallel Query Processing

531

• For initial exploration to determine the types of query plans that 
would be chosen by the optimizer, experiment with a proportional 
subset of your data. For example, if you have a 50-million row table 
that joins to a 5-million row table, you might choose to work with just 
one-tenth of the data, using 5 million and 500,000 rows. Select 
subsets of the tables that provide valid joins. Pay attention to join 
selectivity—if the join on the table would run in parallel because it 
would return 20 rows for a scan, be sure your subset reflects this join 
selectivity.

• The optimizer does not take underlying physical devices into account; 
only the partitioning on the tables. During exploratory tuning work, 
distributing your data on separate physical devices will give you more 
accurate predictions about the probable characteristics of your 
production system using the full tables. You can partition tables that 
reside on a single device and ignore any warning messages during the 
early stages of your planning work, such as testing configuration 
parameters, table partitioning and checking your query optimization. 
Of course, this does not provide accurate I/O statistics.

Working with subsets of data can help determine parallel query plans and 
the degree of parallelism for tables. One difference is that with smaller 
tables, sorts are performed in serial that would be performed in parallel on 
larger tables. 

System level impacts
In addition to other impacts described throughout this chapter, here are 
some concerns to be aware of when adding parallelism to mixed DSS and 
OLTP environments. Your goal should be improved performance of DSS 
through parallelism, without adverse effects on the performance of OLTP 
applications.

Locking issues
Look out for lock contention:

• Parallel queries are slower than queries bench marked without 
contention. If the scans find many pages with exclusive locks due 
to update transactions, performance can change.



System level impacts 

532  

• If parallel queries return a large number of rows using network 
buffer merges, there is likely to be high contention for the 
network buffer. Queries hold shared locks on data pages during 
the scans and cause data modifications to wait for the shared 
locks to be released. You may need to restrict queries with large 
result sets to serial operation.

• If your applications experience deadlocks when DSS queries are 
running in serial, you may see an increase in deadlocks when you 
run these queries in parallel. The transaction that is rolled back in 
these deadlocks is likely to be the OLTP query, because the 
rollback decision for deadlocks is based on the accumulated CPU 
time of the processes involved.

See “Deadlocks and concurrency” on page 262 for more 
information on deadlocks.

Device issues
Configuring multiple devices for tempdb should improve performance for 
parallel queries that require worktables, including those that perform sorts 
and aggregates and those that use the reformatting strategy.

Procedure cache effects
Parallel query plans are slightly larger than serial query plans because they 
contain extra instructions on the partition or pages that the worker 
processes need to access. 

During ad hoc queries, each worker process needs a copy of the query 
plan. Space from the procedure cache is used to hold these plans in 
memory, and is available to the procedure cache again when the ad hoc 
query completes.

Stored procedures in cache are invalidated when you change the max 
parallel degree and max scan parallel degree configuration parameters. The 
next time a query is run, the query is read from disk and recompiled.



CHAPTER 22    Parallel Query Processing

533

When parallel query results can differ
When a query does not include vector or scalar aggregates or does not 
require a final sorting step, a parallel query might return results in a 
different order from the same query run in serial, and subsequent 
executions of the same query in parallel might return results in different 
order each time.

Results from serial and parallel queries that include vector or scalar 
aggregates, or require a final sort step, are returned after all of the results 
from worktables are merged or sorted in the final query processing step. 
Without query clauses that require this final step, parallel queries send 
results to the client using a network buffer merge, that is, each worker 
process sends results to the network buffer as it retrieves the data that 
satisfies the queries.

The relative speed of the different worker processes leads to differences in 
result set ordering. Each parallel scan behaves differently, due to pages 
already in cache, lock contention, and so forth. Parallel queries always 
return the same set of results, just not in the same order. If you need a 
dependable ordering of results, use order by or run the query in serial 
mode.

In addition, due to the pacing effects of multiple worker processes reading 
data pages, two types of queries accessing the same data may return 
different results when an aggregate or a final sort is not done:

• Queries that use set rowcount 

• Queries that select a column into a local variable without sufficiently-
restrictive query clauses

Queries that use set rowcount
The set rowcount option stops processing after a certain number of rows 
are returned to the client. With serial processing, the results are consistent 
in repeated executions. In serial mode, the same rows are returned in the 
same order for a given rowcount value, because a single process reads the 
data pages in the same order every time.



When parallel query results can differ 

534  

With parallel queries, the order of the results and the set of rows returned 
can differ, because worker processes may access pages sooner or later than 
other processes. When set rowcount is in effect, each row is written to the 
network buffer as it is found and the buffer is sent to the client when it is 
full, until the required number of rows have been returned. To get 
consistent results, you must either use a clause that performs a final sort 
step or run the query in serial mode.

Queries that set local variables
This query sets the value of a local variable in a select statement:

select @tid = title_id from titles
    where type = "business"

The where clause matches multiple rows in the titles table. so the local 
variable is always set to the value from the last matching row returned by 
the query. The value is always the same in serial processing, but for 
parallel query processing, the results depend on which worker process 
finishes last. To achieve a consistent result, use a clause that performs a 
final sort step, execute the query in serial mode, or add clauses so that the 
query arguments select only single rows.

Achieving consistent results
To achieve consistent results for the types of queries discussed in this 
section, you can either add a clause to enforce a final sort or you can run 
the queries in serial mode. The query clauses that provide a final sort are:

• order by 

• distinct, except for uses of distinct within an aggregate, such as 
avg(distinct price)

• union, but not union all 

To run queries in serial mode, you can:

• Use set parallel_degree 1 to limit the session to serial operation

• Include the (parallel 1) clause after each table listed in the from clause 
of the query



535

C H A P T E R  2 3 Parallel Query Optimization

This chapter describes the basic strategies that Adaptive Server uses to 
perform parallel queries and explains how the optimizer applies those 
strategies to different queries. Parallel query optimization is an automatic 
process, and the optimized query plans created by Adaptive Server 
generally yield the best response time for a particular query. 

However, knowing the internal workings of a parallel query can help you 
understand why queries are sometimes executed in serial, or with fewer 
worker processes than you expect. Knowing why these events occur can 
help you make changes elsewhere in your system to ensure that certain 
queries are executed in parallel and with the desired number of processes.

Topic Page
What is parallel query optimization? 536

When is optimization performed? 536

Overhead costs 537

Parallel access methods 538

Summary of parallel access methods 548

Degree of parallelism for parallel queries 550

Parallel query examples 559

Runtime adjustment of worker processes 567

Diagnosing parallel performance problems 571

Resource limits for parallel queries 573



What is parallel query optimization? 

536  

What is parallel query optimization?
Parallel query optimization is the process of analyzing a query and 
choosing the best combination of parallel and serial access methods to 
yield the fastest response time for the query. Parallel query optimization is 
an extension of the serial optimization strategies discussed in earlier 
chapters. In addition to the costing performed for serial query 
optimization, parallel optimization analyzes the cost of parallel access 
methods for each combination of join orders, join types, and indexes. The 
optimizer can choose any combination of serial and parallel access 
methods to create the fastest query plan.

Optimizing for response time versus total work
Serial query optimization selects the query plan that is the least costly to 
execute. Since only one process executes the query, choosing the least 
costly plan yields the fastest response time and requires the least amount 
of total work from the server.

The goal of executing queries in parallel is to get the fastest response time, 
even if it involves more total work from the server. During parallel query 
optimization, the optimizer uses cost-based comparisons similar to those 
used in serial optimization to select a final query plan.

However, since multiple worker processes execute the query, a parallel 
query plan requires more total work from Adaptive Server. Multiple 
worker processes, engines, and partitions that improve the speed of a 
query require additional costs in overhead, CPU utilization, and disk 
access. In other words, serial query optimization improves performance by 
minimizing the use of server resources, but parallel query optimization 
improves performance for individual queries by fully utilizing available 
resources to get the fastest response time.

When is optimization performed?
The optimizer considers parallel query plans only when Adaptive Server 
and the current session are properly configured for parallelism, as 
described in “Controlling the degree of parallelism” on page 516.



CHAPTER 23    Parallel Query Optimization

537

If both the Adaptive Server and the current session are configured for 
parallel queries, then all queries within the session are eligible for parallel 
query optimization. Individual queries can also attempt to enforce parallel 
query optimization by using the optimizer hint parallel N for parallel or 
parallel 1 for serial.

If the Adaptive Server or the current session is not configured for parallel 
queries, or if a given query uses optimizer hints to enforce serial execution, 
then the optimizer considers serial access methods; the parallel access 
methods described in this chapter are not considered.

Adaptive Server does not execute parallel queries against system tables.

Overhead costs
Parallel queries incur more overhead costs to perform such internal tasks 
as:

• Allocating and initializing worker processes

• Coordinating worker processes as they execute a query plan

• Deallocating worker processes after the query is completed

To avoid applying these overhead costs to OLTP-based queries, the 
optimizer “disqualifies” tables from using parallel access methods when a 
scan would access fewer than 20 data pages in a table. This restriction 
applies whether or not an index is used to access a table’s data. When 
Adaptive Server must scan fewer than 20 data pages, the optimizer 
considers only serial table and index scans and does not consider parallel 
optimization.

Factors that are not considered
When computing the cost of a parallel access method, the optimizer does 
not consider factors such as the number of engines available, the ratio of 
engines to CPUs, and whether or not a table’s partitions reside on 
dedicated physical devices and controllers. Each of these factors can 
significantly affect the performance of a query. It is up to the System 
Administrator to ensure that these resources are configured in the best 
possible way for the Adaptive Server system as a whole.



Parallel access methods 

538  

See “Configuration parameters for controlling parallelism” on page 517 
for information on configuring Adaptive Server. 

See “Commands for partitioning tables” on page 93 for information on 
partitioning your data to best facilitate parallel queries.

Parallel access methods
The following sections describe parallel access methods and other 
strategies that the optimizer considers when optimizing parallel queries. 
Parallel access methods fall into these general categories:

• Partition-based access methods use two or more worker processes 
to access separate partitions of a table. Partition-based methods yield 
the fastest response times because they can distribute the work in 
accessing a table over both CPUs and physical disks. At the CPU 
level, worker processes can be queued to separate engines to increase 
processing performance. At the physical disk level, worker processes 
can perform I/O independently of one another, if the table’s partitions 
are distributed over separate physical devices and controllers. 

• Hash-based access methods provide parallel access to partitioned 
tables, using either table scans or index scans. Hash-based strategies 
employ multiple worker processes to work on a single chain of data 
pages or a set of index pages. I/O is not distributed over physical 
devices or controllers, but worker processes can still be queued to 
multiple engines to distribute processing and improve response times.

• Range-based access methods provide parallel access during merge 
joins on partitioned tables and unpartitioned tables, including 
worktables created for sorting and merging, and via indexes. The 
partitioning on the tables is not considered when choosing the degree 
of parallelism, so it is not distributed over physical devices or 
controllers. Worker processes can be queued to multiple engines to 
distribute processing and improve response times.



CHAPTER 23    Parallel Query Optimization

539

Parallel partition scan
In a parallel partition scan, multiple worker processes completely scan 
each partition in a partitioned table. One worker process is assigned to 
each partition, and each process reads all pages in the partition. Figure 23-
1 illustrates a parallel partition scan.   

Figure 23-1: Parallel partition scan

The parallel partition scan operates faster than a serial table scan. The 
work is divided over several worker processes that can execute 
simultaneously on different engines. Some worker processes can be 
executing during the time that others sleep on I/O or other system 
resources. If the table partitions reside on separate physical devices, I/O 
parallelism is also possible.

Worker
process A

Worker
process B

Worker
process C

Partition 1

Partition 2

Partition 3

Partitioned Table



Parallel access methods 

540  

Requirements for consideration

The optimizer considers the parallel partition scan only for partitioned 
tables in a query. The table’s data cannot be skewed in relation to the 
number of partitions, or the optimizer disqualifies partition-based access 
methods from consideration. Table data is considered skewed when the 
size of the largest partition is two or more times the average partition size.

Finally, the query must access at least 20 data pages before the optimizer 
considers any parallel access methods.

Cost model

The Adaptive Server optimizer computes the cost of a parallel table 
partition scan as the largest number of logical and physical I/Os performed 
by any one worker process in the scan. In other words, the cost of this 
access method equals the I/O required to read all pages in the largest 
partition of the table.

For example, if a table with 3 partitions has 200 pages in its first partition, 
300 pages in its second, and 500 pages in its last partition, the cost of 
performing a partition scan on that table is 500 logical and 500 physical 
I/Os (assuming 2K I/O for the physical I/O). In contrast, the cost of a serial 
scan of this table is 1000 logical and physical I/Os.

Parallel clustered index partition scan (allpages-locked tables)
A clustered index partition scan uses multiple worker processes to scan 
data pages in a partitioned table when the clustered index key matches a 
search argument. This method can be used only on allpages-locked tables.

One worker process is assigned to each partition in the table. Each worker 
process accesses data pages in the partition, using one of two methods, 
depending on the range of key values accessed by the process. When a 
partitioned table has a clustered index, rows are assigned to partitions 
based on the clustered index key.

Figure 23-2 shows a clustered index partition scan that spans three 
partitions. Worker processes A, B, and C are assigned to each of the table’s 
three partitions. The scan involves two methods:

• Method 1



CHAPTER 23    Parallel Query Optimization

541

Worker process A traverses the clustered index to find the first 
starting page that satisfies the search argument, about midway 
through partition 1. It then begins scanning data pages until it reaches 
the end of partition 1.

• Method 2

Worker processes B and C do not use the clustered index, but, instead, 
they begin scanning data pages from the beginning of their partitions. 
Worker process B completes scanning when it reaches the end of 
partition 2. Worker process C completes scanning about midway 
through partition 3, when the data rows no longer satisfy the search 
argument.   

Figure 23-2: Parallel clustered index partition scan

Worker
process A

Worker
process B

Worker
process C

Partition 1

Partition 2

Partition 3

Index pages

Partitioned tableselect avg (price)
from t1
where keyvalue > 400
and keyvalue < 2700

1

1000

1001

2000

2001

3000

Values assigned to 
the partition



Parallel access methods 

542  

Requirements for consideration

The optimizer considers a clustered index partition scan only when:

• The query accesses at least 20 data pages of the table.

• The table is partitioned and uses allpages locking.

• The table’s data is not skewed in relation to the number of partitions. 
Table data is considered skewed when the size of the largest partition 
is two or more times the average partition size.

Cost model

The Adaptive Server optimizer computes the cost of a clustered index 
partition scan differently, depending on the total number of pages that need 
to be scanned:

• If the total number of pages that need to be scanned is less than or 
equal to two times the average size of a partition, the optimizer costs 
the scan as the total number of pages to be scanned divided by 2.

• If the total number of pages that need to be scanned is greater than two 
times the average size of a partition, the optimizer costs the scan as 
the average number of pages in a partition.

The actual cost of the scan may be higher if:

• The total number of pages that need to be scanned is less than the size 
of a partition, and 

• The data to be scanned lies entirely within one partition 

If both of these conditions are true, the actual cost of the scan is the same 
as if the scan were executed serially. 

Parallel hash-based table scan
Parallel hash-based table scans are performed slightly differently, 
depending on the locking scheme of the table.



CHAPTER 23    Parallel Query Optimization

543

Hash-based table scans on allpages-locked tables

In a hash-based table scan on an allpages-locked table, multiple worker 
processes scan a single chain of data pages in a table simultaneously. All 
worker processes traverse the page chain and apply an internal hash 
function to each page ID. The hash function determines which worker 
process reads the rows in the current page. The hash function ensures that 
only one worker process scans the rows on any given page of the table. 
Figure 23-3 illustrates the hash-based table scan.

Figure 23-3: Parallel hash-based table scan on an allpages-locked 
table

The hash-based scan provides a way to distribute the processing of a single 
chain of data pages over multiple engines. The optimizer may use this 
access method for the outer table of a join query to process a join condition 
in parallel. 

Hash-based table scans on data-only-locked tables

A hash-based scan on a data-only-locked table hashes on either the extent 
number or the allocation page number, rather than hashing on the page 
number. The choice of whether to hash on the allocation page or the extent 
number is a cost-based decision made by the optimizer. Both methods can 
reduce the cost of performing parallel queries on unpartitioned tables. 
Queries that choose a serial scan on an allpages-locked table may use one 
of the new hash-based scan methods if the table is converted to data-only 
locking.

Worker
processes 
A, B, and C

Pages scanned 
by B

Pages scanned 
by C

Pages scanned 
by A

Single page chain



Parallel access methods 

544  

Requirements for consideration

The optimizer considers the hash-based table scan only for heap tables, 
and only for outer tables in a join query—it does not consider this access 
method for clustered indexes or for single-table queries. Hash-based scans 
can be used on either unpartitioned or partitioned tables. The query must 
access at least 20 data pages of the table before the optimizer considers any 
parallel access methods.

Cost model

The optimizer computes the cost of a hash-based table scan as the total 
number of logical and physical I/Os required to scan the table. 

For an allpages-locked table, the physical I/O cost is approximately the 
same as for a serial table scan. The logical cost is the number of pages to 
be read multiplied by the number of worker processes. The cost per worker 
process is one logical I/O for each page in the table, and approximately 1/N 
physical I/Os, with N being the number of worker processes.

For a data-only-locked table, this is approximately the same cost applied 
to a serial table scan, with the physical and logical I/O divided evenly 
between the worker processes.

Parallel hash-based index scan
An index hash-based scan can be performed using either a nonclustered 
index or a clustered index on a data-only-locked table. To perform the 
scan:

• All worker processes traverse the higher index levels.

• All worker processes scan the leaf-level index pages.

For data-only-locked tables, the worker processes scanning the leaf level 
hash on the page ID for each row, and scan the matching data pages.

For allpages-locked tables, a hash-based index scan is performed in one of 
two ways, depending on whether the table is a heap table or has a clustered 
index. The major difference between the two methods is the hashing 
mechanism:

• For a table with a clustered index, the hash is on the key values. 

• For a heap table, the scan hashes on the page ID.



CHAPTER 23    Parallel Query Optimization

545

Figure 23-4 illustrates a nonclustered index hash-based scan on a heap 
table with two worker processes. 

Figure 23-4: Nonclustered index hash-based scan

Cost model and requirements

The cost model of a nonclustered index scan uses the formula:

Pages scanned by 
worker
process 1

Pages scanned by 
worker
process 2

Pages scanned by 
both worker 
processes

Index pages

Data pages

WP2 7WP1

Scan Cost = Number of index levels
+ Number of leaf pages / pages per IO
+ (Number of data pages / pages per IO ) / number of worker processes



Parallel access methods 

546  

The optimizer considers a hash-based index scan for any tables in a query 
that have useful nonclustered indexes, and for data-only-locked tables 
with clustered indexes. The query must also access at least 20 data pages 
of the table.

Note  If a nonclustered index covers the result of a query, the optimizer 
does not consider using the nonclustered index hash-based scan.

See “Index covering” on page 214 for more information about index 
covering.

Parallel range-based scans
Parallel range-based scans are used for the merge process in merge joins.

When two tables are merged in parallel, each worker process is assigned a 
range of values to merge. The range is determined using histogram 
statistics or sampling. When a histogram exists for at least one of the join 
columns, it is used to partition the ranges so that each worker process 
operates on approximately the same number of rows. If neither join 
column has a histogram, sampling similar to that performed for other 
parallel sort operations determines the range of values to be merged by 
each worker process.

Figure 23-5 shows a parallel right-merge join. In this case:

• A right-merge join is used. Table1, the outer table, is scanned into a 
worktable and sorted, then merged with the inner table. These worker 
processes are deallocated at the end of this step.

• The outer table has two partitions, so two worker processes are used 
to perform a parallel partition scan.

• The inner table has a nonclustered index on the join key. max parallel 
degree is set to 3, so 3 worker processes are used.

Requirements for consideration

The optimizer considers parallel merge joins when the configuration 
parameter enable merge joins is set to 1 and the table accesses more than 
20 data pages from the outer table in the merge join.



CHAPTER 23    Parallel Query Optimization

547

Figure 23-5: A parallel right-merge join

data_dev1 data_dev2

All worker processes

Index pages

Data Ppages

WP3WP1

 7WP1 WP2

Table1: 
Partitioned table 
on 2 devices

WP2

Worker process 1

Worker process 2

Worker process 3

Merge runs after sort

Worktable1

Sort

Table2: 
Nonclustered index 
on join key

Pages read by:



Summary of parallel access methods 

548  

Additional parallel strategies
Adaptive Server may employ additional strategies when executing queries 
in parallel. Those strategies involve the use of partitioned worktables and 
parallel sorting.

Partitioned worktables

For queries that require a worktable, Adaptive Server may choose to create 
a partitioned worktable and populate it using multiple worker processes. 
Partitioning the worktable improves performance when Adaptive Server 
populates the table, and therefore, improves the response time of the query 
as a whole.

See “Parallel query examples” on page 559 for examples of queries that 
can benefit from the use of partitioned worktables.

Parallel sorting

Parallel sorting employs multiple worker processes to sort data in parallel, 
similar to the way multiple worker processes execute a query in parallel. 
create index and any query that requires sorting can benefit from the use of 
parallel sorting.

The optimizer does not directly optimize or control the execution of a 
parallel sort.

See “Parallel query examples” on page 559 for examples of queries that 
can benefit from the parallel sorting strategy.

Also, see “Overview of the parallel sorting strategy” on page 577 for a 
detailed explanation of how Adaptive Server executes a sort in parallel.

Summary of parallel access methods
Table 23-1 summarizes the potential use of parallel access methods in 
Adaptive Server query processing. In all cases, the query must access at 
least 20 data pages in the table before the optimizer considers parallel 
access methods. 



CHAPTER 23    Parallel Query Optimization

549

Table 23-1: Parallel access method summary

Selecting parallel access methods
For a given table in a query, the optimizer first evaluates the available 
indexes and partitions to determine which access methods it can use to 
scan the table’s data. For any query that involves a join, Adaptive Server 
considers a range-based merge join, and considers using a parallel merge 
join if parallel query processing is enabled. The use of a range-based scan 
does not depend on table partitioning, and range-based scans can be 
performed using clustered and nonclustered indexes. They are considered, 
and are very likely to be used, on tables that have no useful index on the 
join key.

Table 23-2 shows the other parallel access methods that the optimizer may 
evaluate for different table and index combinations. Hash-based table 
scans are considered only for the outer table in a query, unless the query 
uses the parallel optimizer hint.

Parallel method Major cost factors
Requirements for 
consideration

Competing 
serial methods

Partition-based scan Number of pages in the largest 
partition

Partitioned table with 
balanced data

Serial table scan, 
serial index scan

Hash-based table scan Number of pages in table Any outer table in a join 
query and that is a heap

Serial table scan, 
serial index scan

Clustered index partition 
scan

If total number of pages to be 
scanned <= 2 * number of pages in 
average-sized partition, then: Total 
number of pages to be scanned / 2

If total number of pages to be 
scanned > 2 * number of pages in 
average-sized partition, then: 
Average number of pages in a 
partition

Partitioned table with a 
useful clustered index; 
allpages locking only

Serial index scan

Hash-based index scan Number of index pages above leaf 
level to scan + number of leaf-level 
index pages to scan + (number of 
data pages referenced in leaf-level 
index pages / number of worker 
processes)

Any table with a useful 
nonclustered index or a 
data-only-locked table 
with a clustered index 

Serial index scan

Range-based scan Number of pages to be accessed in 
both tables/number of worker 
processes, plus any sort costs

Any table in a join eligible 
for merge join 
consideration

Serial merge, 
nested-loop join



Degree of parallelism for parallel queries 

550  

Table 23-2: Determining applicable partition or hash-based access 
methods

The optimizer may further eliminate parallel access methods from 
consideration, based on the number of worker processes that are available 
to the query. This process of elimination occurs when the optimizer 
computes the degree of parallelism for the query as a whole.

For an example, see “Partitioned heap table” on page 557.

Degree of parallelism for parallel queries
The degree of parallelism for a query is the number of worker processes 
chosen by the optimizer to execute the query in parallel. The degree of 
parallelism depends on both the upper limit to the degree of parallelism for 
the query and on the level of parallelism suggested by the optimizer. 

Computing the degree of parallelism for a query is important for two 
reasons:

• The final degree of parallelism directly affects the performance of a 
query since it specifies how many worker processes should do the 
work in parallel. 

No useful index
Useful clustered 
index

Useful index (nonclustered 
or clustered on data-only-
locked table)

Partitioned Table Partition scan

Hash-based table scan 
(if table is a heap)

Serial table scan

Clustered index 
partition scan

Serial index scan

Nonclustered index hash-based 
scan

Serial index scan

Unpartitioned Table Hash-based table scan 
(if table is a heap)

Serial table scan

Serial index scan Nonclustered index hash-based 
scan

Serial index scan



CHAPTER 23    Parallel Query Optimization

551

• While computing the degree of parallelism, the optimizer disqualifies 
parallel access methods that would require more worker processes 
than the limits set by configuration parameters, the set command, or 
the parallel clause in a query. This reduces the total number of access 
methods that the optimizer must consider when costing the query, 
and, therefore, decreases the overall optimization time. Disqualifying 
access methods in this manner is especially important for multitable 
joins, where the optimizer must consider many different combinations 
of join orders and access methods before selecting a final query plan.

Upper limit
A System Administrator configures the upper limit to the degree of 
parallelism using server-wide configuration parameters. Session-wide and 
query-level options can further limit the degree of parallelism. These 
limits set both the total number of worker processes that can be used in a 
parallel query and the total number of worker processes that can be used 
for hash-based access methods.

The optimizer removes from consideration any parallel access methods 
that would require more worker processes than the upper limit for the 
query. (If the upper limit to the degree of parallelism is 1, the optimizer 
does not consider any parallel access methods.)

See “Configuration parameters for controlling parallelism” on page 517 
for more information about configuration parameters that control the 
upper limit to the degree of parallelism.

Optimized degree
The optimizer can potentially use worker processes up to the maximum 
degree of parallelism set at the server, session, or query level. However, 
the optimized degree of parallelism may be less than this maximum. For 
partition-based scans, the optimizer chooses the degree of parallelism 
based on the number of partitions in the tables of the query and the number 
of worker processes configured.



Degree of parallelism for parallel queries 

552  

Worker processes for partition-based scans

For partition-based access methods, Adaptive Server requires one worker 
process for every partition in a table. If the number of partitions exceeds 
max parallel degree or a session-level or query-level limit, the optimizer 
uses a hash-based or serial access method; if a merge join can be used, it 
may choose a merge join using the max parallel degree.

Worker processes for hash-based scans

For hash-based access methods, the optimizer does not compute an 
optimal degree of parallelism; instead, it uses the number of worker 
processes specified by the max scan parallel degree parameter. It is up to 
the System Administrator to set max scan parallel degree to an optimal 
value for the Adaptive Server system as a whole. A general rule of thumb 
is to set this parameter to no more than 2 or 3, since it takes only 2–3 
worker processes to fully utilize the I/O of a given physical device.

Worker processes for range-based scans

A merge join can use multiple worker processes to perform:

• The scan that selects rows into a worktable, for any merge join that 
requires a sort

• The worktable sort

• The merge join and subsequent joins in the step

• The range scan of both tables during a full merge join

Usage while creating the worktable

If a worktable is needed for a merge join, the query step that creates the 
worktable can use a serial or parallel access method for the scan. The 
number of worker processes for this step is determined by the usual 
methods for selecting the number of worker processes for a query. The 
query that selects the rows into the worktable can be a single-table query 
or a join performing a nested-loop or merge join, or a combination of 
nested-loops joins and a merge join. 



CHAPTER 23    Parallel Query Optimization

553

Parallel sorting for merge-join worktables

Parallel sorting is used when the number of pages in the worktable to be 
sorted is eight times the value of the number of sort buffers configuration 
parameter.

See Chapter 24, “Parallel Sorting,” for more information about parallel 
sorting.

Number of merge threads

For the merge step, the number of merge threads is set to max parallel 
degree, unless the number of distinct values is smaller than max parallel 
degree. If the number of values to be merged is smaller than the max 
parallel degree, the task uses one worker process per value, with each 
worker process merging one value. If the tables being merged have 
different numbers of distinct values, the lower number determines the 
number of worker processes to be used. The formula is:

When there is only one distinct value on the join column, or there is an 
equality search argument on a join column, the merge step is performed in 
serial mode. If a merge join is used for this query, the merge is performed 
in serial mode:

select * from t1, t2 
where t1.c1 = t2.c1
and t1.c1 = 10

Total usage for merge joins

A merge join can use up to max parallel degree threads for the merge step 
and up to max parallel degree threads can be used for each sort. A merge 
that performs a parallel sort may use up to 2*max parallel degree threads. 
Worker processes used for sorts are released when the sort completes. 

Worker processes = min (max pll degree, min(t1_uniq_vals, t2_uniq_vals))



Degree of parallelism for parallel queries 

554  

Nested-loop joins
For individual tables in a nested-loop join, the optimizer computes the 
degree of parallelism using the same rules described in “Optimized 
degree” on page 551. However, the degree of parallelism for the join query 
as a whole is the product of the worker processes that access individual 
tables in the join. All worker processes allocated for a join query access all 
tables in the join. Using the product of worker processes to drive the 
degree of parallelism for a join ensures that processing is distributed 
evenly over partitions and that the join returns no duplicate rows.

Figure 23-6 illustrates this rule for two tables in a join where the outer 
table has three partitions and the inner table has two partitions. If the 
optimizer determines that partition-based access methods are to be used on 
each table, then the query requires a total of six worker processes to 
execute the join. Each of the six worker processes scans one partition of 
the outer table and one partition of the inner table to process the join 
condition. 



CHAPTER 23    Parallel Query Optimization

555

Figure 23-6: Worker process usage for a nested-loop join

In Figure 23-6, if the optimizer chose to scan the inner table using a serial 
access method, only three worker processes would be required to execute 
the join. In this situation, each worker process would scan one partition of 
the outer table, and all worker processes would scan the inner table to find 
matching rows.

Therefore, for any two tables in a query with scan degrees of m and n 
respectively, the potential degrees of parallelism for a nested-loop join 
between the two tables are:

• 1, if the optimizer accesses both tables serially

• m*1, if the optimizer accesses the first table using a parallel access 
method (with m worker processes), and the second table serially

• n*1, if the optimizer accesses the second table using a parallel access 
method (with n worker processes) and the first table serially

Outer table

Inner table

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

WP2

WP1

 7WP3

WP5

WP4

 7WP6



Degree of parallelism for parallel queries 

556  

• m*n, if the optimizer accesses both tables using parallel access 
methods

Alternative plans

Using partition-based scans on both tables in a join is fairly rare because 
of the high cost of repeatedly scanning the inner table. The optimizer may 
also choose:

• A merge join.

• The reformatting strategy, if reformatting is a cheaper alternative.

• A partitioned-based scan plus a hash-based index scan, when a join 
returns rows from 20 or more data pages.

See Figure 22-7 on page 515 for an illustration.

Computing the degree of parallelism for nested-loop joins

To determine the degree of parallelism for a join between any two tables 
(and to disqualify parallel access methods that would require too many 
worker processes), the optimizer applies the following rules: 

1 The optimizer determines possible access methods and degrees of 
parallelism for the outer table of the join. This process is the same as 
for single-table queries.

See “Optimized degree” on page 551.

2 For each access method determined in step 1, the optimizer calculates 
the remaining number of worker processes that are available for the 
inner table of the join. The following formula determines this number:

3 The optimizer uses the remaining number of worker processes as an 
upper limit to determine possible access methods and degrees of 
parallelism for the inner table of the join.

The optimizer repeats this process for all possible join orders and access 
methods and applies the cost function for joins to each combination. The 
optimizer selects the least costly combination of join orders and access 
methods, and the final combination drives the degree of parallelism for the 
join query as a whole.

Remaining worker processes = max parallel degree/ Worker processes for outer table



CHAPTER 23    Parallel Query Optimization

557

See “Nested-loop joins” on page 554 for examples of this process.

Parallel queries and existence joins

Adaptive Server imposes an additional restriction for subqueries 
processed as existence joins. For these queries, only the number of 
partitions in the outer table determines the degree of parallelism. There are 
only as many worker processes as there are partitions in the outer table. 
The inner table in such a query is always accessed serially. This restriction 
does not apply to subqueries that are flattened into regular joins. 

Examples
The examples in this section show how the limits to the degree of 
parallelism affect the following types of queries:

• A partition heap table

• A nonpartitioned heap table

• A table with a clustered index

Partitioned heap table

Assume that max parallel degree is set to 10 worker processes and max 
scan parallel degree is set to 3 worker processes. 

Single-table query

For a single-table query on a heap table with 6 partitions and no useful 
nonclustered index, the optimizer costs the following access methods:

• A parallel partition scan using 6 worker processes

• A serial table scan using a single process

If max parallel degree is set to 5 worker processes, then the optimizer does 
not consider the partition scan for a table with 6 partitions.



Degree of parallelism for parallel queries 

558  

Query with a join

The situation changes if the query involves a join. If max parallel degree is 
set to 10 worker processes, the query involves a join, and a table with 6 
partitions is the outer table in the query, then the optimizer considers the 
following access methods:

• A partition scan using 6 worker processes

• A hash-based table scan using 3 worker processes

• A merge join using 10 worker processes

• A serial scan using a single process

If max scan parallel degree is set to 5 and max scan parallel degree is set to 
3, then the optimizer considers the following access methods:

• A hash-based table scan using 3 worker processes

• A merge join using 5 worker processes

• A serial scan using a single process

Finally, if max parallel degree is set to 5 and max scan parallel degree is set 
to 1, then the optimizer considers only a merge join as a parallel access 
method.

Nonpartitioned heap table

If the query involves a join, and max scan parallel degree is set to 3, and 
the nonpartitioned heap table is the outer table in the query, then the 
optimizer considers the following access methods:

• A hash-based table scan using 3 worker processes

• A range scan using 10 worker processes for the merge join

• A serial scan using a single process

If max scan parallel degree is set to 1, then the optimizer does not consider 
the hash-based scan.

See “Single-table scans” on page 560 for more examples of determining 
the degree of parallelism for queries.

Table with clustered index

If the table has a clustered index, the optimizer considers the following 
parallel access methods when the table uses allpages locking:



CHAPTER 23    Parallel Query Optimization

559

• A parallel partition scan or a parallel clustered index scan, if the table 
is partitioned and max parallel degree is set to at least 6

• A range scan, using max parallel degree worker processes

• A serial scan

If the table uses data-only-locking, the optimizer considers:

• A parallel partition scan, if the table is partitioned and max parallel 
degree is set to at least 6

• A range scan, using max parallel degree worker processes

• A serial scan

Runtime adjustments to worker processes
Even after the optimizer determines a degree of parallelism for the query 
as a whole, Adaptive Server may make final adjustments at runtime to 
compensate for the actual number of worker processes that are available. 
If fewer worker processes are available at runtime than are suggested by 
the optimizer, the degree of parallelism is reduced to a level that is 
consistent with the available worker processes and the access methods in 
the final query plan. “Runtime adjustment of worker processes” on page 
567 describes the process of adjusting the degree of parallelism at runtime 
and explains how to determine when these adjustments occur.

Parallel query examples
The following sections further explain and provide examples of how 
Adaptive Server optimizes these types of parallel queries:

• Single-table scans

• Multitable joins

• Subqueries

• Queries that require worktables

• union queries

• Queries with aggregates



Parallel query examples 

560  

• select into statements

Commands that insert, delete, or update data, and commands executed 
from within cursors are never considered for parallel query optimization.

Single-table scans
The simplest parallel query optimization involves queries that access a 
single base table. Adaptive Server optimizes these queries by evaluating 
the base table to determine applicable access methods, and then applying 
cost functions to select the least costly plan.

Understanding how Adaptive Server optimizes single-table queries is 
integral to understanding more complex parallel queries. Although queries 
such as multitable joins and subqueries use additional optimization 
strategies, the process of accessing individual tables for those queries is 
the same. 

The following example shows instances in which the optimizer uses 
parallel access methods on single-table queries.

Table partition scan 

This example shows a query where the optimizer chooses a table partition 
scan over a serial table scan. The configuration and table layout are as 
follows:

The example query is:

Configuration parameter values

Parameter Setting

max parallel degree 10 worker processes

max scan parallel degree 2 worker processes

Table layout

Table name Useful indexes
Number of 
partitions Number of pages

authors None 5 Partition 1: 50 pages
Partition 2: 70 pages
Partition 3: 90 pages
Partition 4: 80 pages
Partition 5: 10 pages



CHAPTER 23    Parallel Query Optimization

561

select * 
    from authors 
    where au_lname < "L"

Using the logic in Table 23-2 on page 550, the optimizer determines that 
the following access methods are available for consideration:

• Partition scan

• Serial table scan

The optimizer does not consider a hash-based table scan for the table, 
since the balance of pages in the partitions is not skewed, and the upper 
limit to the degree of parallelism for the table, 10, is high enough to allow 
a partition-based scan.

The optimizer computes the cost of each access method, as follows:

The optimizer chooses to perform a table partition scan at a cost of 90 
physical and logical I/Os. Because the table has 5 partitions, the optimizer 
chooses to use 5 worker processes. The final showplan output for this 
query is:

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 5 worker
processes.
    STEP 1
        The type of query is SELECT.
        Executed in parallel by coordinating process and 5
        worker processes.
    FROM TABLE
        authors
    Nested iteration.
    Table Scan.
    Forward scan.
    Positioning at start of table.
    Executed in parallel with a 5-way partition scan.
    Using I/O Size 16 Kbytes for data pages.
    With LRU Buffer Replacement Strategy for data pages.
    Parallel network buffer merge.

Cost of table partition scan = # of pages in the largest partition = 90 pages

Cost of serial table scan = # of pages in table = 300 pages



Parallel query examples 

562  

Multitable joins
When optimizing joins, the optimizer considers the best join order for all 
combinations of tables and applicable access methods. The optimizer uses 
a different strategy to select access methods for inner and outer tables and 
the degree of parallelism for the join query as a whole.

As in serial processing, the optimizer weighs many alternatives for 
accessing a particular table. The optimizer balances the costs of parallel 
execution with other factors that affect join queries, such as the presence 
of a clustered index, the use of either nested-loop or merge joins, the 
possibility of reformatting the inner table, the join order, and the I/O and 
caching strategy. The following discussion focuses only on parallel versus 
serial access method choices.

Parallel join optimization and join orders

This example illustrates how the optimizer devises a query plan for a join 
query that is eligible for parallel execution. The configuration and table 
layout are as follows:

The example query involves a simple join between these two tables:

select * 
    from publishers, titles 
    where publishers.pub_id = titles.pub_id

In theory, the optimizer considers the costs of all the possible 
combinations:

Configuration parameter values

Parameter Setting

max parallel degree 15 worker processes

max scan parallel degree 3 worker processes

Table layout

Table 
name

Number of 
partitions

Number of 
pages Number of rows

publishers 1 (not partitioned) 1,000 80,000

titles 10 10,000 (distributed 
evenly over 
partitions)

800,000



CHAPTER 23    Parallel Query Optimization

563

• titles as the outer table and publishers as the inner table, with titles 
accessed in parallel

• titles as the outer table and publishers as the inner table, with titles 
accessed serially

• publishers as the outer table and titles as the inner table, with titles 
accessed in parallel

• publishers as the outer table and titles as the inner table, with titles 
accessed serially

• publishers as the outer table and titles as the inner table, with publishers 
accessed in parallel

For example, the cost of a join order in which titles is the outer table and is 
accessed in parallel is calculated as follows:

The cost of having publishers as the outer table is calculated as follows:

However, other factors are often more important in determining the join 
order than whether a particular table is eligible for parallel access.

Scenario A: clustered index on publishers

The presence of a useful clustered index is often the most important factor 
in how the optimizer creates a query plan for a join query. If publishers has 
a clustered index on pub_id and titles has no useful index, the optimizer can 
choose the indexed table (publishers) as the inner table. With this join 
order, each access to the inner table takes only a few reads to find rows.

With publishers as the inner table, the optimizer costs the eligible access 
methods for each table. For titles, the outer table, it considers:

• A parallel partition scan (cost is number of pages in the largest 
partition)

• A serial table scan (cost is number of pages in the table)

For publishers, the inner table, the optimizer considers only a serial 
clustered index scan.

It also considers performing a merge join, sorting the worktable from titles 
into order on titles, either a right-merge or left-merge join.

The final cost of the query is the cost of accessing titles in parallel times 
the number of accesses of the clustered index on publishers.



Parallel query examples 

564  

Scenario B: clustered index on titles

If titles has a clustered index on pub_id, and publishers has no useful index, 
the optimizer chooses titles as the inner table in the query.

With the join order determined, the optimizer costs the eligible access 
methods for each table. For publishers, the outer table, it considers:

• A hash-based table scan (the initial cost is the same as a serial table 
scan)

For titles, the inner table, the optimizer considers only aserial clustered 
index scan.

In this scenario, the optimizer chooses parallel over serial execution of 
publishers. Even though a hash-based table scan has the same cost as a 
serial scan, the processing time is cut by one-third, because each worker 
process can scan the inner table’s clustered index simultaneously. 

Scenario C: neither table has a useful index

If neither table has a useful index, a merge join is a very likely choice for 
the access method. If merge joins are disabled, the table size and available 
cache space can be more important factors than potential parallel access 
for join order. The benefits of having a smaller table as the inner table 
outweigh the benefits of one parallel access method over the other. The 
optimizer chooses the publishers table as the inner table, because it is small 
enough to be read once and kept in cache, reducing costly physical I/O.

Then, the optimizer costs the eligible access methods for each table. For 
titles, the outer table, it considers:

• A parallel partition scan (cost is number of pages in the largest 
partition)

• A serial table scan (cost is number of pages in the table)

For publishers, the inner table, it considers only a serial table scan loaded 
into cache.

The optimizer chooses to access titles in parallel, because it reduces the 
cost of the query by a factor of 10.

In some cases where neither table has a useful index, the optimizer 
chooses the reformatting strategy, creating a temporary table and clustered 
index instead of repeatedly scanning the inner table.



CHAPTER 23    Parallel Query Optimization

565

Subqueries
When a query contains a subquery, Adaptive Server uses different access 
methods to reduce the cost of processing the subquery. Parallel 
optimization depends on the type of subquery and the access methods:

• Materialized subqueries – parallel query methods are not considered 
for the materialization step.

• Flattened subqueries – parallel query optimization is considered only 
when the subquery is flattened to a regular join. It is not considered 
for existence joins or other flattening strategies.

• Nested subqueries – parallel access methods are considered for the 
outermost query block in a query containing a subquery; the inner, 
nested queries always execute serially. Although the optimizer 
considers parallel access methods for only the outermost query block 
in a subquery, all worker processes that access the outer query block 
also access the inner tables of the nested subqueries.

Each worker process accesses the inner, nested query block in serial. 
Although the subquery is run once for each row in the outer table, 
each worker process performs only one-fifth of the executions. 
showplan output for the subquery indicates that the nested query is 
“Executed by 5 worker processes,” since each worker process used in 
the outer query block scans the table specified in the inner query 
block.

Each worker process maintains a separate cache of subquery results, 
so the subquery may be executed slightly more often than in serial 
processing. 

Queries that require worktables
Parallel queries that require worktables create partitioned worktables and 
populate them in parallel. For queries that require sorts, the parallel sort 
manager determines whether to use a serial or parallel sort.

See Chapter 24, “Parallel Sorting,” for more information about parallel 
sorting.



Parallel query examples 

566  

union queries
The optimizer considers parallel access methods for each part of a union 
query separately. Each select in a union is optimized separately, so one 
query can use a parallel plan, another a serial plan, and a third a parallel 
plan with a different number of worker processes. If a union query requires 
a worktable, then the worktable may also be partitioned and populated in 
parallel by worker processes.

If a union query is to return no duplicate rows, then a parallel sort may be 
performed on the internal worktable to remove duplicate rows.

See Chapter 24, “Parallel Sorting,” for more information about parallel 
sorting. 

Queries with aggregates
Adaptive Server considers parallel access methods for queries that return 
aggregate results in the same way it does for other queries. For queries that 
use the group by clause to return a grouped aggregate result, Adaptive 
Server also creates multiple worktables with clustered indexes—one 
worktable for each worker process that executes the query. Each worker 
process stores partial aggregate results in its designated worktable. As 
worker processes finish computing their partial results, they merge those 
results into a common worktable. After all worker processes have merged 
their partial results, the common worktable contains the final grouped 
aggregate result set for the query.

select into statements
select into creates a new table to store the query’s result set. Adaptive 
Server optimizes the base query portion of a select into command in the 
same way it does a standard query, considering both parallel and serial 
access methods. A select into statement that is executed in parallel:

1 Creates the new table using columns specified in the select into 
statement.

2 Creates n partitions in the new table, where n is the degree of 
parallelism that the optimizer chose for the query as a whole.

3 Populates the new table with query results, using n worker processes.



CHAPTER 23    Parallel Query Optimization

567

4 Unpartitions the new table.

Performing a select into statement in parallel requires additional steps than 
the equivalent serial query plan. Therefore, the execution of a parallel 
select into statement takes place using four discrete transactions, rather 
than the two transactions of a serial select into statement. See select in the 
Adaptive Server Reference Manual for information about how this affects 
the database recovery process.

Runtime adjustment of worker processes
The output of showplan describes the optimized plan for a given query. An 
optimized query plan specifies the access methods and the degree of 
parallelism that the optimizer suggests when the query is compiled. At 
execution time, there may be fewer worker processes available than are 
required by the optimized query plan. This can occur when:

• There are not enough worker processes available for the optimized 
query plan.

• The server-level or session-level limits for the query were reduced 
after the query was compiled. This can happen with queries executed 
from within stored procedures.

In these circumstances, Adaptive Server may create an adjusted query plan 
to compensate for the available worker processes. An adjusted query 
plan is generated at runtime and compensates for the lack of available 
worker processes. An adjusted query plan may use fewer worker processes 
than the optimized query plan, and it may use a serial access method 
instead of a parallel method for one or more of the tables.

The response time of an adjusted query plan may be significantly longer 
than its optimized counterpart. Adaptive Server provides:

• A set option, process_limit_action, which allows you to control 
whether runtime adjustments are allowed.

• Information on runtime adjustments in sp_sysmon output.



Runtime adjustment of worker processes 

568  

How Adaptive Server adjusts a query plan
Adaptive Server uses two basic rules to reduce the number of required 
worker processes in an adjusted query plan:

1 If the optimized query plan specifies a partition-based access method 
for a table, but not enough processes are available to scan each 
partition, the adjusted plan uses a serial access method.

2 If the optimized query plan specifies a hash-based access method for 
a table, but not enough processes are available to cover the optimized 
degree of parallelism, the adjusted plan reduces the degree of 
parallelism to a level consistent with the available worker processes.

To illustrate the first case, assume that an optimized query plan 
recommends scanning a table’s five partitions using a partition-based table 
scan. If only four worker processes are actually available at the time the 
query executes, Adaptive Server creates an adjusted query plan that 
accesses the table in serial, using a single process.

In the second case, if the optimized query plan recommended scanning the 
table with a hash-based access method and five worker processes, the 
adjusted query plan would still use a hash-based access method, but with, 
at the most, four worker processes.

Evaluating the effect of runtime adjustments
Although optimized query plans generally outperform adjusted query 
plans, the difference in performance is not always significant. The ultimate 
effect on performance depends on the number of worker processes that 
Adaptive Server uses in the adjusted plan, and whether or not a serial 
access method is used in place of a parallel method. Obviously, the most 
negative impact on performance occurs when Adaptive Server uses a 
serial access method instead of a parallel access method to execute a query. 

The performance of multitable join queries can also suffer dramatically 
from adjusted query plans, since Adaptive Server does not change the join 
ordering when creating an adjusted query plan. If an adjusted query plan 
is executed in serial, the query can potentially perform more slowly than 
an optimized serial join. This may occur because the optimized parallel 
join order for a query is different from the optimized serial join order.



CHAPTER 23    Parallel Query Optimization

569

Recognizing and managing runtime adjustments
Adaptive Server provides two mechanisms to help you observe runtime 
adjustments of query plans.

• set process_limit_action allows you to abort batches or procedures 
when runtime adjustments take place or print warnings.

• showplan prints an adjusted query plan when runtime adjustments 
occur, and showplan is effect.

Using set process_limit_action

The process_limit_action option to the set command lets you monitor the 
use of adjusted query plans at a session or stored procedure level. When 
you set process_limit_action to “abort,” Adaptive Server records Error 
11015 and aborts the query, if an adjusted query plan is required. When 
you set process_limit_action to “warning,” Adaptive Server records Error 
11014 but still executes the query. 

For example, this command aborts the batch when a query is adjusted at 
runtime:

set process_limit_action abort

By examining the occurrences of Errors 11014 and 11015 in the error log, 
you can determine the degree to which Adaptive Server uses adjusted 
query plans instead of optimized query plans. To remove the restriction 
and allow runtime adjustments, use:

set process_limit_action quiet

See set in the Adaptive Server Reference Manual for more information 
about process_limit_action.

Using showplan

When you use showplan, Adaptive Server displays the optimized plan for 
a given query before it runs the query. When the query plan involves 
parallel processing, and a runtime adjustment is made, showplan displays 
this message, followed by the adjusted query plan:

AN ADJUSTED QUERY PLAN WILL BE USED FOR STATEMENT 1 
BECAUSE NOT ENOUGH WORKER PROCESSES ARE AVAILABLE AT 
THIS TIME.



Runtime adjustment of worker processes 

570  

Adaptive Server does not attempt to execute a query when the set noexec 
is in effect, so runtime plans are never displayed while using this option.

Reducing the likelihood of runtime adjustments
To reduce the number of runtime adjustments, you must increase the 
number of worker processes that are available to parallel queries. You can 
do this either by adding more total worker processes to the system or by 
restricting or eliminating parallel execution for noncritical queries, as 
follows:

• Use set parallel_degree and/or set scan_parallel_degree to set session-
level limits on the degree of parallelism, or

• Use the query-level parallel 1 and parallel N clauses to limit the worker 
process usage of individual statements.

To reduce the number of runtime adjustments for system procedures, 
recompile the procedures after changing the degree of parallelism at the 
server or session level. See sp_recompile in the Adaptive Server Reference 
Manual for more information.

Checking runtime adjustments with sp_sysmon
sp_sysmon shows how many times a request for worker processes was 
denied due to a lack of worker processes and how many times the number 
of worker processes recommended for a query was adjusted to a smaller 
number. The following sections of the report provide information:

• “Worker process management” on page 914 describes the output for 
the number of worker process requests that were requested and denied 
and the success and failure of memory requests for worker processes. 

• “Parallel query management” on page 917 describes the sp_sysmon 
output that reports on the number of runtime adjustments and locks 
for parallel queries.



CHAPTER 23    Parallel Query Optimization

571

If insufficient worker processes in the pool seems to be the problem, 
compare the number of worker processes used to the number of worker 
processes configured. If the maximum number of worker processes used 
is equal to the configured value for number of worker processes, and the 
percentage of worker process requests denied is greater than 80 percent, 
increase the value for number of worker processes and re-run sp_sysmon. 
If the maximum number of worker processes used is less than the 
configured value for number of worker processes, and the percentage of 
worker thread requests denied is 0 percent, decreases the value for number 
of worker processes to free memory resources.

Diagnosing parallel performance problems
The following sections provide troubleshooting guidelines for parallel 
queries. They cover two situations:

• The query runs in serial, when you expect it to run in parallel.

• The query runs in parallel, but does not perform as well as you expect.

Query does not run in parallel
If you think that a query should run in parallel but does not, possible 
explanations are:

• The max parallel degree configuration parameter is set to 1, or the 
session-level setting set parallel_degree is set to 1, preventing all 
parallel access.

• The max scan parallel degree configuration parameter is set to 1, or the 
session level setting set scan_parallel_degree is set to 1, preventing 
hash-based parallel access.

• There are insufficient worker threads at execution time. Check for 
runtime adjustments, using the tools discussed in “Runtime 
adjustments to worker processes” on page 559.

• The scope of the scan is less than 20 data pages. This can be bypassed 
with the (parallel) clause.

• The plan calls for a table scan and:



Diagnosing parallel performance problems 

572  

• The table is not a heap, 

• The table is not partitioned, 

• The partitioning is unbalanced, or

• The table is a heap but is not the outer table of a join.

The last two conditions can be bypassed with the (parallel) clause.

• The plan calls for a clustered index scan and:

• The table is not partitioned, or

• The partitioning is unbalanced. This can be bypassed with the 
(parallel) clause.

• The plan calls for a nonclustered index scan, and the chosen index 
covers the required columns.

• The table is a temporary table or a system table.

• The table is the inner table of an outer join.

• A limit has been set through the Resource Governor, and all parallel 
plans exceed that limit in terms of total work.

• The query is a type that is not made parallel, such as an insert, update, 
or delete command, a nested (not the outermost) query, or a cursor.

Parallel performance is not as good as expected
Possible explanations are:

• There are too many partitions for the underlying physical devices.

• There are too many devices per controller.

• The (parallel) clause has been used inappropriately.

• The max scan parallel degree is set too high; the recommended range 
is 2–3.

Calling technical support for diagnosis
If you cannot diagnose the problem using these hints, the following 
information will be needed by Sybase Technical Support to determine the 
source of the problem:



CHAPTER 23    Parallel Query Optimization

573

• The table and index schema—create table, alter table...partition, and 
create index statements are most helpful. Provide output from sp_help 
if the actual create and alter commands are not available.

• The query.

• The output of the query run with commands:

• dbcc traceon (3604,302, 310)

• set showplan on

• set noexec on

• The statistics io output for the query.

Resource limits for parallel queries
The tracking of I/O cost limits may be less precise for partitioned tables 
than for unpartitioned tables, when Adaptive Server is configured for 
parallel query processing. 

When you query a partitioned table, all the labor in processing the query 
is divided among the partitions. For example, if you query a table with 
three partitions, the query’s work is divided among 3 worker processes. If 
the user has specified an I/O resource limit with an upper bound of 6000, 
the optimizer assigns a limit of 2000 to each worker process. 

However, since no two threads are guaranteed to perform the exact same 
amount of work, the parallel processor cannot precisely distribute the 
work among worker processes. You may get an error message saying you 
have exceeded your I/O resource limit when, according to showplan or 
statistics io output, you actually have not. Conversely, one partition may 
exceed the limit slightly, without the limit taking effect.

See the System Administration Guide for more information about setting 
resource limits.



Resource limits for parallel queries 

574  



575

C H A P T E R  2 4 Parallel Sorting

This chapter discusses how to configure the server for improved 
performance for commands that perform parallel sorts.

 The process of sorting data is an integral part of any database 
management system. Sorting is for creating indexes and for processing 
complex queries. The Adaptive Server parallel sort manager provides a 
high-performance, parallel method for sorting data rows. All Transact-
SQL commands that require an internal sort can benefit from the use of 
parallel sorting. 

Parallel sorting and how it works and what factors affect the performance 
of parallel sorts is also covered. You need to understand these subjects to 
get the best performance from parallel sorting, and to keep parallel sort 
resource requirements from interfering with other resource needs. 

Commands that benefits from parallel sorting
Any Transact-SQL command that requires data row sorting can benefit 
from parallel sorting techniques. These commands are:

• create index commands and the alter table...add constraint commands 
that build indexes, unique and primary key

• Queries that use the order by clause

• Queries that use distinct

Topic Page
Commands that benefits from parallel sorting 575

Requirements and resources overview 576

Overview of the parallel sorting strategy 577

Configuring resources for parallel sorting 580

Recovery considerations 594

Tools for observing and tuning sort behavior 594

Using sp_sysmon to tune index creation 599



Requirements and resources overview 

576  

• Queries that perform merge joins requiring sorts

• Queries that use union (except union all)

• Queries that use the reformatting strategy

In addition, any cursors that use the above commands can benefit from 
parallel sorting.

Requirements and resources overview
Like parallel query processing, parallel sorting requires more resources 
than performing the same command in parallel. Response time for creating 
the index or sorting query results improves, but the server performs more 
work due to overhead. 

Adaptive Server’s sort manager determines whether the resources required 
to perform a sort operation in parallel are available, and also whether a 
serial or parallel sort should be performed, given the size of the table and 
other factors. For a parallel sort to be performed, certain criteria must be 
met:

• The select into/bulk copy/pllsort database option must be set to true with 
sp_dboption in the target database:

• For indexes, the option must be enabled in the database where the 
table resides. For creating a clustered index on a partitioned table, 
this option must be enabled, or the sort fails. For creating other 
indexes, serial sorts can be performed if parallel sorts cannot be 
performed.

• For sorting worktables, this option must be on in tempdb. Serial 
sorts can be performed if parallel sorts cannot be performed. 

• Parallel sorts must have a minimum number of worker processes 
available. The number depends on the number of partitions on the 
table and/or the number of devices on the target segment. The degree 
of parallelism at the server and session level must be high enough for 
the sort to use at least the minimum number of worker processes 
required for a parallel sort. Clustered indexes on partitioned tables 
must be created in parallel; other sorts can be performed in serial if 
there are not enough worker processes available. “Worker process 
requirements for parallel sorts” on page 581 and “Worker process 
requirements for select query sorts” on page 584.



CHAPTER 24    Parallel Sorting

577

• For select commands that require sorting, and for creating 
nonclustered indexes, the table to be sorted must be at least eight 
times the size of the available sort buffers (the value of the number of 
sort buffers configuration parameter), or the sort will be performed in 
serial mode. This ensures that Adaptive Server does not perform 
parallel sorting on smaller tables that would not show significant 
improvements in performance. This rule does not apply to creating 
clustered indexes on partitioned tables, since this operation always 
requires a parallel sort.

See “Sort buffer configuration guidelines” on page 587.

• For create index commands, the value of the number of sort buffers 
configuration parameter must be at least as large as the number of 
worker processes available for the parallel sort. 

See “Sort buffer configuration guidelines” on page 587.

Note  You cannot use the dump transaction command after indexes are 
created using a parallel sort. You must dump the database. Serial 
create index commands can be recovered, but only by completely re-
doing the indexing command, which can greatly lengthen recovery 
time. Performing database dumps after serial create indexes is 
recommended to speed recovery, although it is not required in order 
to use dump transaction.

Overview of the parallel sorting strategy
Like the Adaptive Server optimizer, the Adaptive Server parallel sort 
manager analyzes the available worker processes, the input table, and 
other resources to determine the number of worker processes to use for the 
sort.

After determining the number of worker processes to use, Adaptive Server 
executes the parallel sort. The process of executing a parallel sort is the 
same for create index commands and queries that require sorts. Adaptive 
Server executes a parallel sort by:

1 Creating a distribution map. For a merge join with statistics on a join 
column, histogram statistics are used for the distribution map. In other 
cases, the input table is sampled to build the map.



Overview of the parallel sorting strategy 

578  

2 Reading the table data and dynamically partitioning the key values 
into a set of sort buffers, as determined by the distribution map.

3 Sorting each individual range of key values and creating subindexes.

4 Merging the sorted subindexes into the final result set.

Each of these steps is described in the sections that follow. 

Figure 24-1 depicts a parallel sort of a table with two partitions and two 
physical devices on its segment.

Figure 24-1: Parallel sort strategy

Producer 
process 1

Producer 
process 2

4

Distribution map

 2 4 5 97 830 1 6

Consumer 
process 2

Consumer 
process 1

2 4 5 97 8 3 01 6

Partition 1 Partition 2

Sorted data or Sorted data orCoordinating
process subindex subindex

Merged result
or index

Step 1. Sampling 
the data and 
building the 
distribution map.

Step 2. Partitioning 
data into discrete 
ranges.

Step 3. Sorting 
each range and 
creating indexes.

2K sort buffers

Step 4. Merging the 
sorted data.

2

4

2 430 1 5 97 86

8
65

9
7

3
0

1



CHAPTER 24    Parallel Sorting

579

Creating a distribution map
As a first step in executing a parallel sort, Adaptive Server creates a 
distribution map. If the sort is performed as part of a merge join, and there 
are statistics on the join columns, the histograms are used to build the 
distribution map. For other sorts, Adaptive Server selects and sorts a 
random sample of data from the input table. This distribution 
information—referred to as the distribution map—is used in the second 
sort step to divide the input data into equally sized ranges during the next 
phase of the parallel sort process.

The distribution map contains a key value for the highest key that is 
assigned to each range, except the final range in the table. In Figure 24-1, 
the distribution map shows that all values less than or equal to 4 are 
assigned to the first range and that all values greater than 4 are assigned to 
the second range.

Dynamic range partitioning
After creating the distribution map, Adaptive Server employs two kinds of 
worker processes to perform different parts of the sort. These worker 
processes are called producer processes and consumer processes:

• Producer processes read data from the input table and use the 
distribution map to determine the range to which each key value 
belongs. The producers distribute the data by copying it to the sort 
buffers belonging to the correct range.

• Each consumer process reads the data from a range of the sort buffers 
and sorts it into subindexes, as described in “Range sorting” on page 
580.

In Figure 24-1, two producer processes read data from the input table. 
Each producer process scans one table partition and distributes the data 
into ranges using the distribution map. For example, the first producer 
process reads data values 7, 2, 4, 5, and 9. Based on the information in the 
distribution map, the process distributes values 2 and 4 to the first 
consumer process, and values 7, 5, and 9 to the second consumer process.



Configuring resources for parallel sorting 

580  

Range sorting
Each partitioned range has a dedicated consumer process that sorts the 
data in that range independently of other ranges. Depending on the size of 
the table and the number of buffers available to perform the sort, the 
consumers may perform multiple merge runs, writing intermediate results 
to disk, and reading and merging those results, until all of the data for the 
assigned range is completely sorted.

• For create index commands, each consumer for each partitioned range 
of data writes to a separate database device. This improves 
performance through increased I/O parallelism, if database devices 
reside on separate physical devices and controllers. The consumer 
process also builds an index, referred to as a subindex, on the sorted 
data.

• For merge joins, each consumer process writes the ordered rows to a 
separate set of linked data pages, one for each worker process that will 
perform the merge.

• For queries, the consumer process simply orders the data in the range 
from the smallest value to the largest. 

Merging results
After all consumer processes have finished sorting the data for each 
partitioned range: 

• For create index commands, the coordinating process merges the 
subindexes into one final index.

• For merge joins, the worker processes for the merge step perform the 
merge with the other tables in the merge join.

• For other queries, the coordinating process merges the sort results and 
returns them to the client.

Configuring resources for parallel sorting
The following sections describe the resources used by Adaptive Server 
when sorting data in parallel:



CHAPTER 24    Parallel Sorting

581

• Worker processes read the data and perform the sort.

• Sort buffers pass data in cache from producers to consumers, reducing 
physical I/O.

• Large I/O pools in the cache used for the sort also help reduce 
physical I/O.

• Multiple physical devices increase I/O parallelism and help determine 
the number of worker processes for most sorts.

Worker process requirements for parallel sorts
Adaptive Server requires a minimum number of worker processes to 
perform a parallel sort. If additional worker processes are available, the 
sort can be performed more quickly. The minimum number required and 
the maximum number that can be used are determined by the number of:

• Partitions on the table, for creating clustered indexes 

• Devices, for creating nonclustered indexes

• Threads used to create the worktable and the number of devices in 
tempdb, for merge joins

• Devices in tempdb, for other queries that require sorts

If the minimum number of worker processes is not available:

• Sorts for clustered indexes on partitioned tables must be performed in 
parallel; the sort fails if not enough worker processes are available. 

• Sorts for nonclustered indexes and sorts for clustered indexes on 
unpartitioned tables can be performed in serial.

• All sorts for queries can be performed in serial.

The availability of worker processes is determined by server-wide and 
session-wide limits. At the server level, the configuration parameters 
number of worker processes and max parallel degree limit the total size of 
the pool of worker processes and the maximum number that can be used 
by any create index or select command.



Configuring resources for parallel sorting 

582  

The available processes at runtime may be smaller than the configured 
value of max parallel degree or the session limit, due to other queries 
running in parallel. The decision on the number of worker processes to use 
for a sort is made by the sort manager, not by the optimizer. Since the sort 
manager makes this decision at runtime, parallel sort decisions are based 
on the actual number of worker processes available when the sort begins. 

See “Controlling the degree of parallelism” on page 516 for more 
information about controlling the server-wide and session-wide limits.

Worker process requirements for creating indexes

Table 24-1 shows the number of producers and consumers required to 
create indexes. The target segment for a sort is the segment where the 
index is stored when the create index command completes. When you 
create an index, you can specify the location with the on segment_name 
clause. If you do not specify a segment, the index is stored on the default 
segment.

Table 24-1: Number of producers and consumers used for create 
index

Consumers are the workhorses of parallel sort, using CPU time to perform 
the actual sort and using I/O to read and write intermediate results and to 
write the final index to disk. First, the sort manager assigns one worker 
process as a consumer for each target device. Next, if there are enough 
available worker processes, the sort manager assigns one producer to each 
partition in the table. If there are not enough worker processes to assign 
one producer to each partition, the entire table is scanned by a single 
producer.

Index type Producers Consumers

Nonclustered index Number of partitions, or 1 Number of devices on target segment

Clustered index on unpartitioned 
table

1 Number of devices on target segment

Clustered index on partitioned 
table

Number of partitions, or 1 Number of partitions



CHAPTER 24    Parallel Sorting

583

Clustered indexes on partitioned tables

To create a clustered index on a partitioned table, Adaptive Server requires 
at least one consumer process for every partition on the table, plus one 
additional worker process to scan the table. If fewer worker processes are 
available, then the create clustered index command fails and prints a 
message showing the available and required numbers of worker processes.

If enough worker processes are available, the sort manager assigns one 
producer process per partition, as well as one consumer process for each 
partition. This speeds up the reading of the data.

Clustered indexes on unpartitioned tables

Only one producer process can be used to scan the input data for 
unpartitioned tables. The number of consumer processes is determined by 
the number of devices on the segment where the index is to be stored. If 
there are not enough worker processes available, the sort can be performed 
in serial.

Nonclustered indexes

The number of consumer processes is determined by the number of 
devices on the target segment. If there are enough worker processes 
available and the table is partitioned, one producer process is used for each 
partition on the table; otherwise, a single producer process scans the entire 
table. If there are not enough worker processes available, the sort can be 
performed in serial.

Minimum 1 consumer per partition, plus 1 producer

Maximum 2 worker processes per partition

Can be performed in 
serial

No

Minimum 1 consumer per device, plus 1 producer

Maximum 1 consumer per device, plus 1 producer

Can be performed in 
serial

Yes

Minimum 1 consumer per device, plus 1 producer

Maximum 1 consumer per device, plus 1 producer per partition

Can be performed in 
serial

Yes



Configuring resources for parallel sorting 

584  

Using with consumers while creating indexes

RAID devices appear to Adaptive Server as a single database device, so, 
although the devices may be capable of supporting the I/O load of parallel 
sorts, Adaptive Server assigns only a single consumer for the device, by 
default. 

The with consumers clause to the create index statement provides a way to 
specify the number of consumer processes that create index can use. By 
testing the I/O capacity of striped devices, you can determine the number 
of simultaneous processes your RAID device can support and use this 
number to suggest a degree of parallelism for parallel sorting. As a 
baseline, use one consumer for each underlying physical device. This 
example specifies eight consumers:

create index order_ix on orders (order_id) 
with consumers = 8

You can also use the with consumers clause with the alter table...add 
constraint clauses that create the primary key and unique indexes:

alter table orders 
add constraint prim_key primary key (order_id) with 
consumers = 8

The with consumers clause can be used for creating indexes—you cannot 
control the number of consumer processes used in internal sorts for 
parallel queries. You cannot use this clause when creating a clustered 
index on a partitioned table. When creating a clustered index on a 
partitioned table, Adaptive Server must use one consumer process for 
every partition in the table to ensure that the final, sorted data is distributed 
evenly over partitions.

Adaptive Server ignores the with consumers clause if the specified number 
of processes is higher than the number of available worker processes, or if 
the specified number of processes exceeds the server or session limits for 
parallelism.

Worker process requirements for select query sorts
Queries that require worktable sorts have multistep query plans. The 
determination of the number of worker processes for a worktable sort is 
made after the scan of the base table completes. During the phase of the 
query where data is selected into the worktable, each worker process 
selects data into a separate partition of the worktable. 



CHAPTER 24    Parallel Sorting

585

Once the worktable is populated, additional worker processes are allocated 
to perform the sort step. showplan does not report this value; the sort 
manager reports only whether the sort is performed in serial or parallel. 
The worker processes used in the previous step do not participate in the 
sort, but remain allocated to the parallel task until the task completes. 

Worker processes for merge-join sorts

For merge joins, one consumer process is assigned for each device in 
tempdb; if there is only one device in tempdb, two consumer processes are 
used. The number of producers depends on the number of partitions in the 
worktable, and the setting for max parallel degree:

• If the worktable is not partitioned, one producer process is used.

• If the number of consumers plus the number of partitions in the 
worktable is less than or equal to max parallel degree, one producer 
process is allocated for each worktable partition.

• If the number of consumer processes plus the number of partitions in 
the worktable is greater than max parallel degree, one producer 
process is used.

Other worktable sorts

For all other worktable sorts, the worktable is unpartitioned when the step 
that created it completes. Worker processes are assigned in the following 
way:

• If there is only one device in tempdb, the sort is performed using two 
consumers and one producer; otherwise, one consumer process is 
assigned for each device in tempdb, and a single producer process 
scans the worktable.

• If there are more devices in tempdb than the available worker 
processes when the sort starts, the sort is performed in serial.

Caches, sort buffers, and parallel sorts
Optimal cache configuration and an optimal setting for the number of sort 
buffers configuration parameter can greatly speed the performance of 
parallel sorts. The tuning options to consider when you work with parallel 
sorting are:



Configuring resources for parallel sorting 

586  

• Cache bindings

• Sort buffers

• Large I/O

In most cases, the configuration you choose for normal runtime operation 
should be aimed at the needs of queries that perform worktable sorts. You 
need to understand how many simultaneous sorts are needed and the 
approximate size of the worktables, and then configure the cache used by 
tempdb to optimize the sort.

If you drop and create indexes during periods of low system usage, you 
can reconfigure caches and pools and change cache bindings to optimize 
the sorts and reduce the time required. If you need to perform index 
maintenance while users are active, you need to consider the impact that 
re configuration could have on user response time. Configuring a large 
percentage of the cache for exclusive use by the sort or temporarily 
unbinding objects from caches can seriously impact performance for other 
tasks.

Cache bindings

Sorts for create index take place in the cache to which the table is bound. 
If the table is not bound to a cache, but the database is, then cache is used. 
If there is no explicit cache binding, the default data cache is used. 
Worktable sorts use the cache to which tempdb is bound, or the default data 
cache. 

To configure the number of sort buffers and large I/O for a particular sort, 
always check the cache bindings. You can see the binding for a table with 
sp_help. To see all of the cache bindings on a server, use sp_helpcache. 
Once you have determined the cache binding for a table, use 
sp_cacheconfig check the space in the 2K and 16K pools in the cache.

Number of sort buffers can affect sort performance

Producers perform disk I/O to read the input table, and consumers perform 
disk I/O to read and write intermediate sort results to and from disk. 
During the sort, producers pass data to consumers using the sort buffers. 
This avoids disk I/O by copying data rows completely in memory. The 
reserved buffers are not available to any other tasks for the duration of the 
sort. 



CHAPTER 24    Parallel Sorting

587

The number of sort buffers configuration parameter determines the 
maximum space that can be used to perform a serial sort. Each sort 
instance can use up to the number of sort buffers value for each sort. If 
active sorts have reserved all of the buffers in a cache, and another sort 
needs sort buffers, that sort waits until buffers are available in the cache.

Sort buffer configuration guidelines

Since number of sort buffers controls the amount of data that can be read 
and sorted in one batch, configuring more sort buffers increases the batch 
size, reduces the number of merge runs needed, and makes the sort run 
faster. Changing number of sort buffers is dynamic, so you do not have to 
restart the server.

Some general guidelines for configuring sort buffers are as follows:

• The sort manager chooses serial sorts when the number of pages in a 
table is less than 8 times the value of number of sort buffers. In most 
cases, the default value (500) works well for select queries and small 
indexes. At this setting, the sort manager chooses serial sorting for all 
create index and worktable sorts of 4000 pages or less, and parallel 
sorts for larger result sets, saving worker processes for query 
processing and larger sorts. It allows multiple sort processes to use up 
to 500 sort buffers simultaneously. 

A temporary worktable would need to be very large before you would 
need to set the value higher to reduce the number of merge runs for a 
sort. See “Sizing the tempdb” on page 623 for more information.

• If you are creating indexes on large tables while other users are active, 
configure the number of sort buffers so that you do not disrupt other 
activity that needs to use the data cache.

• If you are re-creating indexes during scheduled maintenance periods 
when few users are active on the system, you may want to configure 
a high value for sort buffers. To speed your index maintenance, you 
may want to benchmark performance of high sort buffer values, large 
I/O, and cache bindings to optimize your index activity.

• The reduction in merge runs is a logarithmic function. Increasing the 
value of number of sort buffers from 500 to 600 has very little effect on 
the number of merge runs. Increasing the size to a much larger value, 
such as 5000, can greatly speed the sort by reducing the number of 
merge runs and the amount of I/O needed.



Configuring resources for parallel sorting 

588  

• If number of sort buffers is set to less than the square root of the 
worktable size, sort performance is degraded. Since worktables 
include only columns specified in the select list plus columns needed 
for later joins, worktable size for merge joins is usually considerably 
smaller than the original table size.

When enough sort buffers are configured, fewer intermediate steps and 
merge runs need to take place during a sort, and physical I/O is required. 
When number of sort buffers is equal to or greater than the number of pages 
in the table, the sort can be performed completely in cache, with no 
physical I/O for the intermediate steps: the only I/O required is the I/O to 
read and write the data and index pages.

Using less than the configured number of sort buffers

There are two types of sorts that may use fewer than the configured 
number of sort buffers:

• Creating a clustered index on a partition table always requires a 
parallel sort. If the table size is smaller than the number of configured 
sort buffers, then the sort reserves the number of pages in the table for 
the sort.

• Small serial sorts reserve just the number of sort buffers required to 
hold the table in cache.

Configuring the number of sort buffers parameter

When creating indexes in parallel, the number of sort buffers must be equal 
to or less than 90 percent of the number of buffers in the pool area, before 
the wash marker, as shown in Figure 24-2. 

Figure 24-2: Area available for sort buffers

MRU LRU

Wash marker

Up to 90% of the space before the wash 
marker can be used for sort buffers

Using a 2K pool



CHAPTER 24    Parallel Sorting

589

The limit of 90 percent of the pool size is not enforced when you configure 
the number of sort buffers parameter, but it is enforced when you run the 
create index command, since the limit is enforced on the pool for the table 
being sorted. The maximum value that can be set for number of sort buffers 
is 32,767; this value is enforced by sp_configure.

Computing the allowed sort buffer value for a pool

sp_cacheconfig returns the size of the pool in megabytes and the wash size 
in kilobytes. For example, this output shows the size of the pools in the 
default data cache:

Cache: default data cache,   Status: Active,   Type: Default
      Config Size: 0.00 Mb,   Run Size: 38.23 Mb
      Config Replacement: strict LRU,   Run Replacement: strict LRU
      Config Partition:            2,   Run Partition:            2
 IO Size  Wash Size Config Size  Run Size     APF Percent 
 -------- --------- ------------ ------------ ----------- 
     2 Kb   4544 Kb      0.00 Mb     22.23 Mb     10      
    16 Kb   3200 Kb     16.00 Mb     16.00 Mb     10

This procedure takes the size of the 2K pool and its wash size as 
parameters, converts both values to pages and computes the maximum 
number of pages that can be used for sort buffers:

create proc bufs @poolsize numeric(6,2), @wash int
as
select "90% of non-wash 2k pool" = 
    ((@poolsize * 512) - (@wash/2)) * .9

The following example executes bufs with values of “22.23 Mb” for the 
pool size and “4544 Kb” for the wash size:

bufs 22.23, 4544

The bufs procedure returns the following results:

90% of non-wash 2k pool
----------------------- 
              8198.784 

This command sets the number of sort buffers to 8198 pages:

sp_configure "number of sort buffers", 8198



Configuring resources for parallel sorting 

590  

If the table on which you want to create the index is bound to a user-
defined cache, configure the appropriate number of sort buffers for the 
specific cache. As an alternative, you can unbind the table from the cache, 
create the index, and rebind the table:

sp_unbindcache pubtune, titles
create clustered index title_ix 
    on titles (title_id)
sp_bindcache pubtune_cache, pubtune, titles

 Warning! The buffers used by a sort are reserved entirely for the use of 
the sort until the sort completes. They cannot be used by another other task 
on the server. Setting the number of sort buffers to 90 percent of the pool 
size can seriously affect query processing if you are creating indexes while 
other transactions are active.

Procedure for estimating merge levels and I/O

The following procedure estimates the number of merge runs and the 
amount of physical I/O required to create an index:

create proc merge_runs @pages int, @bufs int
as
declare @runs int, @merges int, @maxmerge int

select @runs = ceiling ( @pages / @bufs ) 

/* if all pages fit into sort buffers, no merge runs needed */
if @runs <=1 
        select @merges = 0
else 
begin
    if @runs > @bufs select @maxmerge = @bufs
    else  select @maxmerge = @runs

    if @maxmerge < 2 select @maxmerge = 2

    select @merges = ceiling(log10(@runs) / log10(@maxmerge)) 
end
select @merges "Merge Levels",
        2 * @pages * @merges + @pages "Total IO"

The parameters for the procedure are:



CHAPTER 24    Parallel Sorting

591

• pages – the number of pages in the table, or the number of leaf-level 
pages in a nonclustered index. 

• bufs – the number of sort buffers to configure.

This example uses the default number of sort buffers for a table with 
2,000,000 pages:

merge_runs 2000000, 500, 20

The merge_runs procedure estimates that 2 merge runs and 10,000,000 
I/Os would be required to create the index:

 Merge Levels Total IO    
 ------------ ----------- 
            2    10000000  

Increasing the number of sort buffers to 1500 reduces the number of merge 
runs and the I/O required:

merge_runs 2000000, 1500 
 Merge Levels Total IO    
 ------------ ----------- 
            1     6000000  

The total I/O predicted by this procedure may be different than the I/O 
usage on your system, depending on the size and configuration of the 
cache and pools used by the sort.

Configuring caches for large I/O during parallel sorting

Sorts can use large I/O:

• During the sampling phase

• For the producers scanning the input tables 

• For the consumers performing disk I/O on intermediate and final sort 
results

For these steps, sorts can use the largest pool size available in the cache 
used by the table being sorted; they can use the 2K pool if no large I/O 
buffers are available.



Configuring resources for parallel sorting 

592  

Balancing sort buffers and large I/O configuration

Configuring a pool for 16K buffers in the cache used by the sort greatly 
speeds I/O for the sort, substantially reducing the number of physical I/Os 
for a sort. Part of this I/O savings results from using large I/O to scan the 
input table.

Additional I/O, both reads and writes, takes place during merge phases of 
the sort. The amount of I/O during this step depends on the number of 
merge phases required. During the sort and merge step, buffers are either 
read once and not needed again, or they are filled with intermediate sort 
output results, written to disk, and available for reuse. The cache-hit ratio 
during sorts will always be low, so configuring a large 16K cache wastes 
space that can better be used for sort buffers, to reduce merge runs.

For example, creating a clustered index on a 250MB table using a 32MB 
cache performed optimally with only 4MB configured in the 16K pool and 
10,000 sort buffers. Larger pool sizes did not affect the cache hit ratio or 
number of I/Os. Changing the wash size for the 16K pool to the maximum 
allowed helped performance slightly, since the small pool size tended to 
allow buffers to reach the LRU end of the cache before the writes were 
completed. The following formula computes the maximum allowable 
wash size for a 16K pool:

select floor((size_in_MB * 1024 /16) * .8) * 16

Disk requirements
Disk requirements for parallel sorting are as follows:

• Space is needed to store the completed index.

• Having multiple devices in the target segment increases the number 
of consumers for worktable sorts and for creating nonclustered 
indexes and clustered indexes on non partitioned tables. 



CHAPTER 24    Parallel Sorting

593

Space requirements for creating indexes

Creating indexes requires space to store the sorted index. For clustered 
indexes, this requires copying the data rows to new locations in the order 
of the index key. The newly ordered data rows and the upper levels of the 
index must be written before the base table can be removed. Unless you 
are using the with sorted_data clause to suppress the sort, creating a 
clustered index requires approximately 120 percent of the space occupied 
by the table.

Creating a nonclustered index requires space to store the new index. To 
help determine the size of objects and the space that is available, use the 
following system procedures:

• sp_spaceused – to see the size of the table. See “Using sp_spaceused 
to Display Object Size” on page 338.

• sp_estspace – to predict the size of the index. See “Using sp_estspace 
to Estimate Object Size” on page 340.

• sp_helpsegment – to see space left on a database segment. See 
“Checking data distribution on devices with sp_helpsegment” on 
page 101.

Space requirements for worktable sorts

Queries that sort worktables (merge joins and order by, distinct, union, and 
reformatting) first copy the needed columns for the query into the 
worktable and then perform the sort. These worktables are stored on the 
system segment in tempdb, so this is the target segment for queries that 
require sorts. To see the space available and the number of devices, use:

tempdb..sp_helpsegment system

The process of inserting the rows into the worktable and the parallel sort 
do not require multiple devices to operate in parallel. However, 
performance improves when the system segment in tempdb spans multiple 
database devices. 

Number of devices in the target segment

As described in “Worker process requirements for parallel sorts” on page 
581, the number of devices in the target segment determines the number 
of consumers for sort operations, except for creating a clustered index on 
a partitioned table. 



Recovery considerations 

594  

Performance considerations for query processing, such as the 
improvements in I/O when indexes are on separate devices from the data 
are more important in determining your device allocations and object 
placement than sort requirements.

If your worktable sorts are large enough to require parallel sorts, multiple 
devices in the system segment of tempdb will speed these sorts, as well as 
increase I/O parallelism while rows are being inserted into the worktable.

Recovery considerations
Creating indexes is a minimally-logged database operation. Serial sorts are 
recovered from the transaction log by completely redoing the sort. 
However, parallel create index commands are not recoverable from the 
transaction log—after performing a parallel sort, you must dump the 
database before you can use the dump transaction command on the 
database. 

Adaptive Server does not automatically perform parallel sorting for create 
index commands unless the select into/bulk copy/pllsort database option is 
set on. Creating a clustered index on a partitioned table always requires a 
parallel sort; other sort operations can be performed in serial if the select 
into/bulk copy/pllsort option is not enabled. 

Tools for observing and tuning sort behavior
Adaptive Server provides several tools for working with sort behavior:

• set sort_resources on shows how a create index command would be 
performed, without creating the index. See “Using set sort_resources 
on” on page 595.

• Several system procedures can help estimate the size, space, and time 
requirements:

• sp_configure – Displays configuration parameters. See 
“Configuration parameters for controlling parallelism” on page 
517.



CHAPTER 24    Parallel Sorting

595

• sp_helpartition – Displays information about partitioned tables. 
See “Getting information about partitions” on page 98.

• sp_helpsegment – Displays information about segments, devices, 
and space usage. See “Checking data distribution on devices 
with sp_helpsegment” on page 101. 

• sp_sysmon – Reports on many system resources used for parallel 
sorts, including CPU utilization, physical I/O, and caching. See 
“Using sp_sysmon to tune index creation” on page 599.

Using set sort_resources on
The set sort_resources on command can help you understand how the sort 
manager performs parallel sorting for create index statements. You can use 
it before creating an index to determine whether you want to increase 
configuration parameters or specify additional consumers for a sort.

After you use set sort_resources on, Adaptive Server does not actually 
create indexes, but analyzes resources, performs the sampling step, and 
prints detailed information about how Adaptive Server would use parallel 
sorting to execute the create index command. Table 24-2 describes the 
messages that can be printed for sort operations.

Table 24-2: Basic sort resource messages

Message Explanation See 
The Create Index is done 
using sort_type

sort_type is either “Parallel Sort” or 
“Serial Sort.”

“Requirements and resources 
overview” on page 576

Sort buffer size: N N is the configured value for the number 
of sort buffers configuration parameter.

“Sort buffer configuration 
guidelines” on page 587

Parallel degree: N N is the maximum number of worker 
processes that the parallel sort can use, 
as set by configuration parameters.

“Caches, sort buffers, and 
parallel sorts” on page 585

Number of output 
devices: N

N is the total number of database 
devices on the target segment.

“Disk requirements” on page 
592

Number of producer 
threads: N

N is the optimal number of producer 
processes determined by the sort 
manager.

“Worker process requirements 
for parallel sorts” on page 581

Number of consumer 
threads: N

N is the optimal number of consumer 
processes determined by the sort 
manager.

“Worker process requirements 
for parallel sorts” on page 581



Tools for observing and tuning sort behavior 

596  

Examples

The following examples show the output of the set sort_resources 
command.

Nonclustered index on a nonpartitioned table

This example shows how Adaptive Server performs parallel sorting for a 
create index command on an unpartitioned table. Pertinent details for the 
example are:

• The default segment spans 4 database devices.

• max parallel degree is set to 20 worker processes.

• number of sort buffers is set to the default, 500 buffers.

The following commands set sort_resources on and issue a create index 
command on the orders table:

set sort_resources on
create index order_ix on orders (order_id)

Adaptive Server prints the following output:

The Create Index is done using Parallel Sort
Sort buffer size: 500
Parallel degree: 20
Number of output devices: 4
Number of producer threads: 1
Number of consumer threads: 4
The distribution map contains 3 element(s) for 4 
partitions.
Partition Element: 1
      

The distribution map 
contains M element(s) 
for N partitions.

M is the number of elements that define 
range boundaries in the distribution 
map. N is the total number of partitions 
(ranges) in the distribution map.

“Creating a distribution map” 
on page 579

Partition Element:N
value

N is the number of the distribution map 
element. value is the distribution map 
element that defines the boundary of 
each partition.

“Creating a distribution map” 
on page 579

Number of sampled 
records: N

N is the number of sampled records used 
to create the distribution map.

“Creating a distribution map” 
on page 579

Message Explanation See 



CHAPTER 24    Parallel Sorting

597

458052

Partition Element: 2
      
909063

Partition Element: 3
      
1355747

Number of sampled records: 2418

In this example, the 4 devices on the default segment determine the number 
of consumer processes for the sort. Because the input table is not 
partitioned, the sort manager allocates 1 producer process, for a total 
degree of parallelism of 5. 

The distribution map uses 3 dividing values for the 4 ranges. The lowest 
input values up to and including the value 458052 belong to the first range. 
Values greater than 458052 and less than or equal to 909063 belong to the 
second range. Values greater than 909063 and less than or equal to 
1355747 belong to the third range. Values greater than 1355747 belong to 
the fourth range.

Nonclustered index on a partitioned table

This example uses the same tables and devices as the first example. 
However, in this example, the input table is partitioned before creating the 
nonclustered index. The commands are:

set sort_resources on
alter table orders partition 9
create index order_ix on orders (order_id)

In this case, the create index command under the sort_resources option 
prints the output:

The Create Index is done using Parallel Sort
Sort buffer size: 500
Parallel degree: 20
Number of output devices: 4
Number of producer threads: 9
Number of consumer threads: 4
The distribution map contains 3 element(s) for 4 
partitions.
Partition Element: 1
      



Tools for observing and tuning sort behavior 

598  

458464
Partition Element: 2
      
892035
Partition Element: 3
      
1349187
Number of sampled records: 2448

Because the input table is now partitioned, the sort manager allocates 9 
producer threads, for a total of 13 worker processes. The number of 
elements in the distribution map is the same, although the values differ 
slightly from those in the previous sort examples.

Clustered index on partitioned table executed in parallel

This example creates a clustered index on orders, specifying the segment 
name, order_seg.

set sort_resources on
alter table orders partition 9
create clustered index order_ix 
    on orders (order_id) on order_seg

Since the number of available worker processes is 20, this command can 
use 9 producers and 9 consumers, as shown in the output:

The Create Index is done using Parallel Sort
Sort buffer size: 500
Parallel degree: 20
Number of output devices: 9
Number of producer threads: 9
Number of consumer threads: 9
The distribution map contains 8 element(s) for 9 
partitions.
Partition Element: 1

199141
Partition Element: 2

397543
Partition Element: 3

598758
Partition Element: 4

800484



CHAPTER 24    Parallel Sorting

599

Partition Element: 5

1010982
Partition Element: 6

1202471
Partition Element: 7

1397664
Partition Element: 8

1594563
Number of sampled records: 8055

This distribution map contains 8 elements for the 9 partitions on the table 
being sorted. The number of worker processes used is 18.

Sort failure

For example, if only 10 worker processes had been available for this 
command, it could have succeeded using a single producer process to read 
the entire table. If fewer than 10 worker processes had been available, a 
warning message would be printed instead of the sort_resources output:

Msg 1538, Level 17, State 1:
Server ’snipe’, Line 1:
Parallel degree 8 is less than required parallel 
degree 10 to create clustered index on partition 
table. Change the parallel degree to required 
parallel degree and retry.

Using sp_sysmon to tune index creation
You can use the “begin_sample” and “end_sample” syntax for sp_sysmon 
to provide performance results for individual create index commands:

sp_sysmon begin_sample
create index ...
sp_sysmon end_sample

Sections of the report to check include:

• The “Sample Interval,” for the total time taken to create the index

• Cache statistics for the cache used by the table



Using sp_sysmon to tune index creation 

600  

• Check the value for “Buffer Grabs” for the 2K and 16K pools to 
determine the effectiveness of large I/O.

• Check the value “Dirty Buffer Grabs,” If this value is nonzero, set 
the wash size in the pool higher and/or increase the pool size, 
using sp_poolconfig. 

• Disk I/O for the disks used by the table and indexes: check the value 
for “Total Requested I/Os” 



601

C H A P T E R  2 5 Tuning Asynchronous Prefetch

This chapter explains how asynchronous prefetch improves I/O 
performance for many types of queries by reading data and index pages 
into cache before they are needed by the query. 

How asynchronous prefetch improves performance
Asynchronous prefetch improves performance by anticipating the pages 
required for certain well-defined classes of database activities whose 
access patterns are predictable. The I/O requests for these pages are issued 
before the query needs them so that most pages are in cache by the time 
query processing needs to access the page. Asynchronous prefetch can 
improve performance for:

• Sequential scans, such as table scans, clustered index scans, and 
covered nonclustered index scans 

• Access via nonclustered indexes

• Some dbcc checks and update statistics 

• Recovery

Asynchronous prefetch can improve the performance of queries that 
access large numbers of pages, such as decision support applications, as 
long as the I/O subsystems on the machine are not saturated.

Topic Page
How asynchronous prefetch improves performance 601

When prefetch is automatically disabled 607

Tuning Goals for Asynchronous Prefetch 611

Other Adaptive Server performance features 612

Special settings for asynchronous prefetch limits 615

Maintenance activities for high prefetch performance 616

Performance monitoring and asynchronous prefetch 617



How asynchronous prefetch improves performance 

602  

Asynchronous prefetch cannot help (or may help only slightly) when the 
I/O subsystem is already saturated or when Adaptive Server is CPU-
bound. It may be used in some OLTP applications, but to a much lesser 
degree, since OLTP queries generally perform fewer I/O operations.

When a query in Adaptive Server needs to perform a table scan, it:

• Examines the rows on a page and the values in the rows.

• Checks the cache for the next page to be read from a table. If that page 
is in cache, the task continues processing. If the page is not in cache, 
the task issues an I/O request and sleeps until the I/O completes.

• When the I/O completes, the task moves from the sleep queue to the 
run queue. When the task is scheduled on an engine, Adaptive Server 
examines rows on the newly fetched page.

This cycle of executing and stalling for disk reads continues until the table 
scan completes. In a similar way, queries that use a nonclustered index 
process a data page, issue the I/O for the next page referenced by the index, 
and sleep until the I/O completes, if the page is not in cache.

This pattern of executing and then waiting for I/O slows performance for 
queries that issue physical I/Os for large number of pages. In addition to 
the waiting time for the physical I/Os to complete, the task switches on and 
off the engine repeatedly. This task switching adds overhead to processing.

Improving query performance by prefetching pages
Asynchronous prefetch issues I/O requests for pages before the query 
needs them so that most pages are in cache by the time query processing 
needs to access the page. If required pages are already in cache, the query 
does not yield the engine to wait for the physical read. (It may still yield 
for other reasons, but it yields less frequently.)

Based on the type of query being executed, asynchronous prefetch builds 
a look-ahead set of pages that it predicts will be needed very soon. 
Adaptive Server defines different look-ahead sets for each processing type 
where asynchronous prefetch is used.



CHAPTER 25    Tuning Asynchronous Prefetch

603

In some cases, look-ahead sets are extremely precise; in others, some 
assumptions and speculation may lead to pages being fetched that are 
never read. When only a small percentage of unneeded pages are read into 
cache, the performance gains of asynchronous prefetch far outweigh the 
penalty for the wasted reads. If the number of unused pages becomes large, 
Adaptive Server detects this condition and either reduces the size of the 
look-ahead set or temporarily disables prefetching.

Prefetching control mechanisms in a multiuser environment
When many simultaneous queries are prefetching large numbers of pages 
into a buffer pool, there is a risk that the buffers fetched for one query 
could be flushed from the pool before they are used.

Adaptive Server tracks the buffers brought into each pool by asynchronous 
prefetch and the number that are used. It maintains a per-pool count of 
prefetched but unused buffers. By default, Adaptive Server sets an 
asynchronous prefetch limit of 10 percent of each pool. In addition, the 
limit on the number of prefetched but unused buffers is configurable on a 
per-pool basis.

The pool limits and usage statistics act like a governor on asynchronous 
prefetch to keep the cache-hit ratio high and reduce unneeded I/O. Overall, 
the effect is to ensure that most queries experience a high cache-hit ratio 
and few stalls due to disk I/O sleeps.

The following sections describe how the look-ahead set is constructed for 
the activities and query types that use asynchronous prefetch. In some 
asynchronous prefetch optimizations, allocation pages are used to build 
the look-ahead set.

For information on how allocation pages record information about object 
storage, see “Allocation pages” on page 146.



How asynchronous prefetch improves performance 

604  

Look-ahead set during recovery
During recovery, Adaptive Server reads each log page that includes 
records for a transaction and then reads all the data and index pages 
referenced by that transaction, to verify timestamps and to roll transactions 
back or forward. Then, it performs the same work for the next completed 
transaction, until all transactions for a database have been processed. Two 
separate asynchronous prefetch activities speed recovery: asynchronous 
prefetch on the log pages themselves and asynchronous prefetch on the 
referenced data and index pages.

Prefetching log pages

The transaction log is stored sequentially on disk, filling extents in each 
allocation unit. Each time the recovery process reads a log page from a 
new allocation unit, it prefetches all the pages on that allocation unit that 
are in use by the log.

In databases that do not have a separate log segment, log and data extents 
may be mixed on the same allocation unit. Asynchronous prefetch still 
fetches all the log pages on the allocation unit, but the look-ahead sets may 
be smaller.

Prefetching data and index pages

For each transaction, Adaptive Server scans the log, building the look-
ahead set from each referenced data and index page. While one 
transaction’s log records are being processed, asynchronous prefetch 
issues requests for the data and index pages referenced by subsequent 
transactions in the log, reading the pages for transactions ahead of the 
current transaction.

Note  Recovery uses only the pool in the default data cache. See “Setting 
limits for recovery” on page 615 for more information.

Look-ahead set during sequential scans
Sequential scans include table scans, clustered index scans, and covered 
nonclustered index scans.



CHAPTER 25    Tuning Asynchronous Prefetch

605

During table scans and clustered index scans, asynchronous prefetch uses 
allocation page information about the pages used by the object to construct 
the look-ahead set. Each time a page is fetched from a new allocation unit, 
the look-ahead set is built from all the pages on that allocation unit that are 
used by the object.

The number of times a sequential scan hops between allocation units is 
kept to measure fragmentation of the page chain. This value is used to 
adapt the size of the look-ahead set so that large numbers of pages are 
prefetched when fragmentation is low, and smaller numbers of pages are 
fetched when fragmentation is high. For more information, see “Page 
chain fragmentation” on page 609.

Look-ahead set during nonclustered index access
When using a nonclustered index to access rows, asynchronous prefetch 
finds the page numbers for all qualified index values on a nonclustered 
index leaf page. It builds the look-ahead set from the unique list of all the 
pages that are needed.

Asynchronous prefetch is used only if two or more rows qualify.

If a nonclustered index access requires several leaf-level pages, 
asynchronous prefetch requests are also issued on the leaf pages.

Look-ahead set during dbcc checks
Asynchronous prefetch is used during the following dbcc checks:

• dbcc checkalloc, which checks allocation for all tables and indexes in 
a database, and the corresponding object-level commands, dbcc 
tablealloc and dbcc indexalloc

• dbcc checkdb, which checks all tables and index links in a database, 
and dbcc checktable, which checks individual tables and their indexes



How asynchronous prefetch improves performance 

606  

Allocation checking

The dbcc commands checkalloc, tablealloc and indexalloc, which check 
page allocations validate information on the allocation page. The look-
ahead set for the dbcc operations that check allocation is similar to the 
look-ahead set for other sequential scans. When the scan enters a different 
allocation unit for the object, the look-ahead set is built from all the pages 
on the allocation unit that are used by the object.

checkdb and checktable

The dbcc checkdb and dbcc checktable commands check the page chains 
for a table, building the look-ahead set in the same way as other sequential 
scans.

If the table being checked has nonclustered indexes, they are scanned 
recursively, starting at the root page and following all pointers to the data 
pages. When checking the pointers from the leaf pages to the data pages, 
the dbcc commands use asynchronous prefetch in a way that is similar to 
nonclustered index scans. When a leaf-level index page is accessed, the 
look-ahead set is built from the page IDs of all the pages referenced on the 
leaf-level index page.

Look-ahead set minimum and maximum sizes
The size of a look-ahead set for a query at a given point in time is 
determined by several factors:

• The type of query, such as a sequential scan or a nonclustered index 
scan

• The size of the pools used by the objects that are referenced by the 
query and the prefetch limit set on each pool

• The fragmentation of tables or indexes, in the case of operations that 
perform scans

• The recent success rate of asynchronous prefetch requests and 
overload conditions on I/O queues and server I/O limits

Table 25-1 summarizes the minimum and maximum sizes for different 
type of asynchronous prefetch usage. 



CHAPTER 25    Tuning Asynchronous Prefetch

607

Table 25-1: Look-ahead set sizes

When prefetch is automatically disabled
Asynchronous prefetch attempts to fetch needed pages into buffer pools 
without flooding the pools or the I/O subsystem and without reading 
unneeded pages. If Adaptive Server detects that prefetched pages are 
being read into cache but not used, it temporarily limits or discontinues 
asynchronous prefetch.

Access type Action Look-ahead set sizes

Table scan
Clustered index scan
Covered leaf level scan

Reading a page from a 
new allocation unit

Minimum is 8 pages needed by the query

Maximum is the smaller of:

• The number of pages on an allocation unit that 
belong to an object (at 2K, maximum is 255; 
256 minus the allocation page).

• The pool prefetch limits

Nonclustered index scan Locating qualified 
rows on the leaf page 
and preparing to 
access data pages

Minimum is 2 qualified rows

Maximum is the smaller of:

• The number of unique page numbers on 
qualified rows on the leaf index page

• The pool’s prefetch limit

Recovery Recovering a 
transaction

Maximum is the smaller of:

• All of the data and index pages touched by a 
transaction undergoing recovery

• The prefetch limit of the pool in the default 
data cache

Scanning the 
transaction log

Maximum is all pages on an allocation unit 
belonging to the log 

dbcc tablealloc, indexalloc, and 
checkalloc

Scanning the page 
chain

Same as table scan

dbcc checktable and checkdb Scanning the page 
chain 

Checking 
nonclustered index 
links to data pages

Same as table scan

All of the data pages referenced on a leaf level 
page.



When prefetch is automatically disabled 

608  

Flooding pools
For each pool in the data caches, a configurable percentage of buffers can 
be read in by asynchronous prefetch and held until their first use. For 
example, if a 2K pool has 4000 buffers, and the limit for the pool is 10 
percent, then, at most, 400 buffers can be read in by asynchronous prefetch 
and remain unused in the pool. If the number of nonaccessed prefetched 
buffers in the pool reaches 400, Adaptive Server temporarily discontinues 
asynchronous prefetch for that pool.

As the pages in the pool are accessed by queries, the count of unused 
buffers in the pool drops, and asynchronous prefetch resumes operation. If 
the number of available buffers is smaller than the number of buffers in the 
look-ahead set, only that many asynchronous prefetches are issued. For 
example, if 350 unused buffers are in a pool that allows 400, and a query’s 
look-ahead set is 100 pages, only the first 50 asynchronous prefetches are 
issued.

This keeps multiple asynchronous prefetch requests from flooding the 
pool with requests that flush pages out of cache before they can be read. 
The number of asynchronous I/Os that cannot be issued due to the per-pool 
limits is reported by sp_sysmon.

I/O system overloads
Adaptive Server and the operating system place limits on the number of 
outstanding I/Os for the server as a whole and for each engine. The 
configuration parameters max async i/os per server and max async i/os per 
engine control these limits for Adaptive Server. See your operating system 
documentation for more information on configuring them for your 
hardware.

The configuration parameter disk i/o structures controls the number of disk 
control blocks that Adaptive Server reserves. Each physical I/O (each 
buffer read or written) requires one control block while it is in the I/O 
queue.

See the System Administration Guide.



CHAPTER 25    Tuning Asynchronous Prefetch

609

If Adaptive Server tries to issue asynchronous prefetch requests that would 
exceed max async i/os per server, max async i/os per engine, or disk i/o 
structures, it issues enough requests to reach the limit and discards the 
remaining requests. For example, if only 50 disk I/O structures are 
available, and the server attempts to prefetch 80 pages, 50 requests are 
issued, and the other 30 are discarded.

sp_sysmon reports the number of times these limits are exceeded by 
asynchronous prefetch requests. See “Asynchronous prefetch activity 
report” on page 978.

Unnecessary reads
Asynchronous prefetch tries to avoid unnecessary physical reads. During 
recovery and during nonclustered index scans, look-ahead sets are exact, 
fetching only the pages referenced by page number in the transaction log 
or on index pages. 

Look-ahead sets for table scans, clustered index scans, and dbcc checks are 
more speculative and may lead to unnecessary reads. During sequential 
scans, unnecessary I/O can take place due to:

• Page chain fragmentation on allpages-locked tables

• Heavy cache utilization by multiple users

Page chain fragmentation

Adaptive Server’s page allocation mechanism strives to keep pages that 
belong to the same object close to each other in physical storage by 
allocating new pages on an extent already allocated to the object and by 
allocating new extents on allocation units already used by the object.

However, as pages are allocated and deallocated, page chains on data-
only-locked tables can develop kinks. Figure 25-1 shows an example of a 
kinked page chain between extents in two allocation units.



When prefetch is automatically disabled 

610  

Figure 25-1: A kink in a page chain crossing allocation units

In Figure 25-1, when a scan first needs to access a page from allocation 
unit 0, it checks the allocation page and issues asynchronous I/Os for all 
the pages used by the object it is scanning, up to the limit set on the pool. 
As the pages become available in cache, the query processes them in order 
by following the page chain. When the scan reaches page 10, the next page 
in the page chain, page 273, belongs to allocation unit 256.

When page 273 is needed, allocation page 256 is checked, and 
asynchronous prefetch requests are issued for all the pages in that 
allocation unit that belong to the object.

When the page chain points back to a page in allocation unit 0, there are 
two possibilities:

• The prefetched pages from allocation unit 0 are still in cache, and the 
query continues processing with no unneeded physical I/Os. 

283

511

279

..

274

256 257 258 259 260 261 262 263

264 265 266 267 268 269 270 271

272 273 275 276 277 278

280 281 282 284 285 286 287

.
504 505 506 507 508 509 510

27 2824 25 26 29 30 31

750 1 2 3 4 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

248 249 250 251 252 253 254 255 OAM page

Pages used by object

Other pages

Allocation page

...



CHAPTER 25    Tuning Asynchronous Prefetch

611

• The prefetch pages from allocation unit 0 have been flushed from the 
cache by the reads from allocation unit 256 and other I/Os taking 
place by other queries that use the pool. The query must reissue the 
prefetch requests. This condition is detected in two ways:

• Adaptive Server’s count of the hops between allocation pages 
now equals two. It uses the ratio between the count of hops and 
the prefetched pages to reduce the size of the look-ahead set, so 
fewer I/Os are issued.

• The count of prefetched but unused pages in the pool is likely to 
be high, so asynchronous prefetch may be temporarily 
discontinued or reduced, based on the pool’s limit.

Tuning Goals for Asynchronous Prefetch
Choosing optimal pool sizes and prefetch percentages for buffer pools can 
be key to achieving improved performance with asynchronous prefetch. 
When multiple applications are running concurrently, a well-tuned 
prefetching system balances pool sizes and prefetch limits to accomplish 
these goals:

• Improved system throughput 

• Better performance by applications that use asynchronous prefetch

• No performance degradation in applications that do not use 
asynchronous prefetch

Configuration changes to pool sizes and the prefetch limits for pools are 
dynamic, allowing you to make changes to meet the needs of varying 
workloads. For example, you can configure asynchronous prefetch for 
good performance during recovery or dbcc checking and reconfigure 
afterward without needing to restart Adaptive Server.

See “Setting limits for recovery” on page 615 and “Setting limits for 
dbcc” on page 616 for more information.



Other Adaptive Server performance features 

612  

Commands for configuration
Asynchronous prefetch limits are configured as a percentage of the pool in 
which prefetched but unused pages can be stored. There are two 
configuration levels:

• The server-wide default, set with the configuration parameter global 
async prefetch limit. When you first install, the default value for global 
async prefetch limit is 10 (percent).

For more information, see of the System Administration Guide.

• A per-pool override, set with sp_poolconfig. To see the limits set for 
each pool, use sp_cacheconfig.

For more information, see of the System Administration Guide.

Changing asynchronous prefetch limits takes effect immediately, and does 
not require a reboot. Both the global and per-pool limits can also be 
configured in the configuration file.

Other Adaptive Server performance features
This section covers the interaction of asynchronous prefetch with other 
Adaptive Server performance features.

Large I/O
The combination of large I/O and asynchronous prefetch can provide rapid 
query processing with low I/O overhead for queries performing table scans 
and for dbcc operations.

When large I/O prefetches all the pages on an allocation unit, the minimum 
number of I/Os for the entire allocation unit is:

• 31 16K I/Os 

• 7 2K I/Os, for the pages that share an extent with the allocation page



CHAPTER 25    Tuning Asynchronous Prefetch

613

Sizing and limits for the 16k pool

Performing 31 16K prefetches with the default asynchronous prefetch 
limit of 10 percent of the buffers in the pool requires a pool with at least 
310 16K buffers. If the pool is smaller, or if the limit is lower, some 
prefetch requests will be denied. To allow more asynchronous prefetch 
activity in the pool, you can configure a larger pool or a larger prefetch 
limit for the pool.

If multiple overlapping queries perform table scans using the same pool, 
the number of unused, prefetched pages allowed in the poll needs to be 
higher. The queries are probably issuing prefetch requests at slightly 
staggered times and are at different stages in reading the accessed pages. 
For example, one query may have just prefetched 31 pages, and have 31 
unused pages in the pool, while an earlier query has only 2 or 3 unused 
pages left. To start your tuning efforts for these queries, assume one-half 
the number of pages for a prefetch request multiplied by the number of 
active queries in the pool.

Limits for the 2K pool

Queries using large I/O during sequential scans may still need to perform 
2K I/O:

• When a scan enters a new allocation unit, it performs 2K I/O on the 7 
pages in the unit that share space with the allocation page. 

• If pages from the allocation unit already reside in the 2K pool when 
the prefetch requests are issued, the pages that share that extent must 
be read into the 2K pool.

If the 2K pool has its asynchronous prefetch limit set to 0, the first 7 reads 
are performed by normal asynchronous I/O, and the query sleeps on each 
read if the pages are not in cache. Set the limits on the 2K pool high enough 
that it does not slow prefetching performance.



Other Adaptive Server performance features 

614  

Fetch-and-discard (MRU) scans
When a scan uses MRU replacement policy, buffers are handled in a 
special manner when they are read into the cache by asynchronous 
prefetch. First, pages are linked at the MRU end of the chain, rather than 
at the wash marker. When the query accesses the page, the buffers are re 
linked into the pool at the wash marker. This strategy helps to avoid cases 
where heavy use of a cache flushes prefetched buffers linked at the wash 
marker before they can be used. It has little impact on performance, unless 
large numbers of unneeded pages are being prefetched. In this case, the 
prefetched pages are more likely to flush other pages from cache. 

Parallel scans and large I/Os
The demand on buffer pools can become higher with parallel queries. With 
serial queries operating on the same pools, it is safe to assume that queries 
are issued at slightly different times and that the queries are in different 
stages of execution: some are accessing pages are already in cache, and 
others are waiting on I/O.

Parallel execution places different demands on buffer pools, depending on 
the type of scan and the degree of parallelism. Some parallel queries are 
likely to issue a large number of prefetch requests simultaneously. 

Hash-based table scans

Hash-based table scans on allpages-locked tables have multiple worker 
processes accessing the same page chain. Each worker process checks the 
page ID of each page in the table, but examines only the rows on those 
pages where page ID matches the hash value for the worker process.

The first worker process that needs a page from a new allocation unit 
issues a prefetch request for all pages from that unit. When the scans of 
other worker processes also need pages from that allocation unit, they will 
either find that the pages they need are already in I/O or already in cache. 
As the first scan to complete enters the next unit, the process is repeated.

As long as one worker process in the family performing a hash-based scan 
does not become stalled (waiting for a lock, for example), the hash-based 
table scans do not place higher demands on the pools than they place on 
serial processes. Since the multiple processes may read the pages much 
more quickly than a serial process does, they change the status of the pages 
from unused to used more quickly.



CHAPTER 25    Tuning Asynchronous Prefetch

615

Partition-based scans

Partition-based scans are more likely to create additional demands on 
pools, since multiple worker processes may be performing asynchronous 
prefetching on different allocation units. On partitioned tables on multiple 
devices, the per-server and per-engine I/O limits are less likely to be 
reached, but the per-pool limits are more likely to limit prefetching.

Once a parallel query is parsed and compiled, it launches its worker 
processes. If a table with 4 partitions is being scanned by 4 worker 
processes, each worker process attempts to prefetch all the pages in its first 
allocation unit. For the performance of this single query, the most 
desirable outcome is that the size and limits on the 16K pool are 
sufficiently large to allow 124 (31*4) asynchronous prefetch requests, so 
all of the requests succeed. Each of the worker processes scans the pages 
in cache quickly, moving onto new allocation units and issuing more 
prefetch requests for large numbers of pages.

Special settings for asynchronous prefetch limits
You may want to change asynchronous prefetch configuration temporarily 
for specific purposes, including:

• Recovery

• dbcc operations that use asynchronous prefetch

Setting limits for recovery
During recovery, Adaptive Server uses only the 2K pool of the default data 
cache. If you shut down the server using shutdown with nowait, or if the 
server goes down due to power failure or machine failure, the number of 
log records to be recovered may be quite large.

To speed recovery, you can edit the configuration file to do one or both of 
the following:

• Increase the size of the 2K pool in the default data cache by reducing 
the size of other pools in the cache

• Increase the prefetch limit for the 2K pool



Maintenance activities for high prefetch performance 

616  

Both of these configuration changes are dynamic, so you can use 
sp_poolconfig to restore the original values after recovery completes, 
without restarting Adaptive Server. The recovery process allows users to 
log into the server as soon as recovery of the master database is complete. 
Databases are recovered one at a time and users can begin using a 
particular database as soon as it is recovered. There may be some 
contention if recovery is still taking place on some databases, and user 
activity in the 2K pool of the default data cache is heavy.

Setting limits for dbcc
If you are performing database consistency checking at a time when other 
activity on the server is low, configuring high asynchronous prefetch 
limits on the pools used by dbcc can speed consistency checking.

dbcc checkalloc can use special internal 16K buffers if there is no 16K pool 
in the cache for the appropriate database. If you have a 2K pool for a 
database, and no 16K pool, set the local prefetch limit to 0 for the pool 
while executing dbcc checkalloc. Use of the 2K pool instead of the 16K 
internal buffers may actually hurt performance.

Maintenance activities for high prefetch performance
Page chains for all pages-locked tables and the leaf levels of indexes 
develop kinks as data modifications take place on the table. In general, 
newly created tables have few kinks. Tables where updates, deletes, and 
inserts that have caused page splits, new page allocations, and page 
deallocations are likely to have cross-allocation unit page chain kinks. If 
more than 10 to 20 percent of the original rows in a table have been 
modified, you should determine if kinked page chains are reducing 
asynchronous prefetch effectiveness. If you suspect that page chain kinks 
are reducing asynchronous prefetch performance, you may need to re-
create indexes or reload tables to reduce kinks.



CHAPTER 25    Tuning Asynchronous Prefetch

617

Eliminating kinks in heap tables
For allpages-locked heaps, page allocation is generally sequential, unless 
pages are deallocated by deletes that remove all rows from a page. These 
pages may be reused when additional space is allocated to the object. You 
can create a clustered index (and drop it, if you want the table stored as a 
heap) or bulk copy the data out, truncate the table, and copy the data in 
again. Both activities compress the space used by the table and eliminate 
page-chain kinks.

Eliminating kinks in clustered index tables
For clustered indexes, page splits and page deallocations can cause page 
chain kinks. Rebuilding clustered indexes does not necessarily eliminate 
all cross-allocation page linkages. Use fillfactor for clustered indexes where 
you expect growth, to reduce the number of kinks resulting from data 
modifications.

Eliminating kinks in nonclustered indexes
If your query mix uses covered index scans, dropping and re-creating 
nonclustered indexes can improve asynchronous prefetch performance, 
once the leaf-level page chain becomes fragmented.

Performance monitoring and asynchronous prefetch
The output of statistics io reports the number physical reads performed by 
asynchronous prefetch and the number of reads performed by normal 
asynchronous I/O. In addition, statistics io reports the number of times that 
a search for a page in cache was found by the asynchronous prefetch 
without holding the cache spinlock.

See “Reporting physical and logical I/O statistics” on page 763 for more 
information.

sp_sysmon report contains information on asynchronous prefetch in both 
the “Data Cache Management” section and the “Disk I/O Management” 
section. 



Performance monitoring and asynchronous prefetch 

618  

If you are using sp_sysmon to evaluate asynchronous prefetch 
performance, you may see improvements in other performance areas, such 
as:

• Much higher cache hit ratios in the pools where asynchronous 
prefetch is effective

• A corresponding reduction in context switches due to cache misses, 
with voluntary yields increasing

• A possible reduction in lock contention. Tasks keep pages locked 
during the time it takes for perform I/O for the next page needed by 
the query. If this time is reduced because asynchronous prefetch 
increases cache hits, locks will be held for a shorter time.

See “Data cache management” on page 973 and “Disk I/O management” 
on page 994 for more information. 



619

C H A P T E R  2 6 tempdb Performance Issues

This chapter discusses the performance issues associated with using the 
tempdb database. tempdb is used by Adaptive Server users. Anyone can 
create objects in tempdb. Many processes use it silently. It is a server-wide 
resource that is used primarily for internal sorts processing, creating 
worktables, reformatting, and for storing temporary tables and indexes 
created by users.

Many applications use stored procedures that create tables in tempdb to 
expedite complex joins or to perform other complex data analysis that is 
not easily performed in a single step.

How management of tempdb affects performance
Good management of tempdb is critical to the overall performance of 
Adaptive Server. tempdb cannot be overlooked or left in a default state. It 
is the most dynamic database on many servers and should receive special 
attention. 

If planned for in advance, most problems related to tempdb can be 
avoided. These are the kinds of things that can go wrong if tempdb is not 
sized or placed properly: 

Topic Page
How management of tempdb affects performance 619

Types and uses of temporary tables 620

Initial allocation of tempdb 622

Sizing the tempdb 623

Placing tempdb 624

Dropping the master Device from tempdb segments 624

Binding tempdb to its own cache 625

Temporary tables and locking 626

Minimizing logging in tempdb 627

Optimizing temporary tables 628



Types and uses of temporary tables 

620  

• tempdb fills up frequently, generating error messages to users, who 
must then resubmit their queries when space becomes available.

• Sorting is slow, and users do not understand why their queries have 
such uneven performance.

• User queries are temporarily locked from creating temporary tables 
because of locks on system tables.

• Heavy use of tempdb objects flushes other pages out of the data cache.

Main solution areas for tempdb performance
These main areas can be addressed easily:

• Sizing tempdb correctly for all Adaptive Server activity

• Placing tempdb optimally to minimize contention

• Binding tempdb to its own data cache

• Minimizing the locking of resources within tempdb

Types and uses of temporary tables
The use or misuse of user-defined temporary tables can greatly affect the 
overall performance of Adaptive Server and your applications. 

Temporary tables can be quite useful, often reducing the work the server 
has to do. However, temporary tables can add to the size requirement of 
tempdb. Some temporary tables are truly temporary, and others are 
permanent.

tempdb is used for three types of tables:

• Truly temporary tables

• Regular user tables

• Worktables



CHAPTER 26    tempdb Performance Issues

621

Truly temporary tables
You can create truly temporary tables by using “#” as the first character of 
the table name:

create table #temptable (...)

or:

select select_list 
    into #temptable ...

Temporary tables:

• Exist only for the duration of the user session or for the scope of the 
procedure that creates them

• Cannot be shared between user connections

• Are automatically dropped at the end of the session or procedure (or 
can be dropped manually)

When you create indexes on temporary tables, the indexes are stored in 
tempdb:

create index tempix on #temptable(col1)

Regular user tables
You can create regular user tables in tempdb by specifying the database 
name in the command that creates the table:

create table tempdb..temptable (...)

or:

select select_list
    into tempdb..temptable

Regular user tables in tempdb:

• Can persist across sessions

• Can be used by bulk copy operations

• Can be shared by granting permissions on them

• Must be explicitly dropped by the owner (otherwise, they are removed 
when Adaptive Server is restarted) 

You can create indexes in tempdb on permanent temporary tables:



Initial allocation of tempdb 

622  

create index tempix on tempdb..temptable(col1)

Worktables
Worktables are automatically created in tempdb by Adaptive Server for 
merge joins, sorts, and other internal server processes. These tables:

• Are never shared

• Disappear as soon as the command completes

Initial allocation of tempdb
When you install Adaptive Server, tempdb is 2MB, and is located 
completely on the master device, as shown in Figure 26-1. This is 
typically the first database that a System Administrator needs to make 
larger. The more users on the server, the larger it needs to be. It can be 
altered onto the master device or other devices. Depending on your needs, 
you may want to stripe tempdb across several devices. 

Figure 26-1: tempdb default allocation

Use sp_helpdb to see the size and status of tempdb. The following example 
shows tempdb defaults at installation time:

sp_helpdb tempdb
name      db_size  owner  dbid   created     status
--------- -------- ------ ------ ----------- --------------------
tempdb    2.0 MB   sa     2     May 22, 1999 select into/bulkcopy

device_frag  size    usage        free kbytes
------------ -------- ------------ ---------
master       2.0 MB  data and log 1248

d_master

tempdb

(2MB)
data and log



CHAPTER 26    tempdb Performance Issues

623

Sizing the tempdb
tempdb needs to be big enough to handle the following processes for every 
concurrent Adaptive Server user:

• Worktables for merge joins

• Worktables that are created for distinct, group by, and order by, for 
reformatting, and for the OR strategy, and for materializing some 
views and subqueries

• Temporary tables (those created with “#” as the first character of their 
names)

• Indexes on temporary tables

• Regular user tables in tempdb

• Procedures built by dynamic SQL

Some applications may perform better if you use temporary tables to split 
up multitable joins. This strategy is often used for:

• Cases where the optimizer does not choose a good query plan for a 
query that joins more than four tables

• Queries that join a very large number of tables

• Very complex queries

• Applications that need to filter data as an intermediate step

You might also use tempdb to:

• Denormalize several tables into a few temporary tables

• Normalize a denormalized table to do aggregate processing

For most applications, make tempdb 20 to 25% of the size of your user 
databases to provide enough space for these uses.



Placing tempdb 

624  

Placing tempdb
Keep tempdb on separate physical disks from your critical application 
databases. Use the fastest disks available. If your platform supports solid 
state devices and your tempdb use is a bottleneck for your applications, use 
those devices. After you expand tempdb onto additional devices, drop the 
master device from the system, default, and logsegment segments.

Although you can expand tempdb on the same device as the master 
database,Sybase suggests that you use separate devices. Also, remember 
that logical devices, but not databases, are mirrored using Adaptive Server 
mirroring. If you mirror the master device, you create a mirror of all 
portions of the databases that reside on the master device. If the mirror 
uses serial writes, this can have a serious performance impact if your 
tempdb database is heavily used.

Dropping the master Device from tempdb segments
By default, the system, default, and logsegment segments for tempdb 
include its 2MB allocation on the master device. When you allocate new 
devices to tempdb, they automatically become part of all three segments. 
Once you allocate a second device to tempdb, you can drop the master 
device from the default and logsegment segments. This way, you can be 
sure that the worktables and other temporary tables in tempdb do not 
contend with other uses on the master device.

To drop the master device from the segments:

1 Alter tempdb onto another device, if you have not already done so. For 
example:

alter database tempdb on tune3 = 20

2 Issue a use tempdb command, and then drop the master device from 
the segments:

sp_dropsegment "default", tempdb, master
sp_dropdegment system, tempdb, master
sp_dropdegment logsegment, tempdb, master

3 To verify that the default segment no longer includes the master 
device, issue this command:

select dbid, name, segmap



CHAPTER 26    tempdb Performance Issues

625

from sysusages, sysdevices
where sysdevices.low <= sysusages.size + vstart
  and sysdevices.high >= sysusages.size + vstart -1
  and dbid = 2
  and (status = 2 or status = 3)

The segmap column should report “1” for any allocations on the 
master device, indicating that only the system segment still uses the 
device:

 dbid   name            segmap      
 ------ --------------- ----------- 
      2 master                    1 
      2 tune3                     7

Using multiple disks for parallel query performance
If tempdb spans multiple devices, as shown in Figure 26-2, you can take 
advantage of parallel query performance for some temporary tables or 
worktables.

Figure 26-2: tempdb spanning disks

Binding tempdb to its own cache
Under normal Adaptive Server use, tempdb makes heavy use of the data 
cache as temporary tables are created, populated, and then dropped.

disk_2 disk_3

d_master

disk_1

tempdbtempdb



Temporary tables and locking 

626  

Assigning tempdb to its own data cache:

• Keeps the activity on temporary objects from flushing other objects 
out of the default data cache

• Helps spread I/O between multiple caches

See “Examining cache needs for tempdb” on page 320 for more 
information.

Commands for cache binding
Use sp_cacheconfig and sp_poolconfig to create named data caches and to 
configure pools of a given size for large I/O. Only a System Administrator 
can configure caches and pools. 

For instructions on configuring named caches and pools, see the System 
Administration Guide. 

Once the caches have been configured, and the server has been restarted, 
you can bind tempdb to the new cache:

sp_bindcache "tempdb_cache", tempdb

Temporary tables and locking
Creating or dropping temporary tables and their indexes can cause lock 
contention on the system tables in tempdb. When users create tables in 
tempdb, information about the tables must be stored in system tables such 
as sysobjects, syscolumns, and sysindexes. If multiple user processes are 
creating and dropping tables in tempdb, heavy contention can occur on the 
system tables. Worktables created internally do not store information in 
system tables.

If contention for tempdb system tables is a problem with applications that 
must repeatedly create and drop the same set of temporary tables, try 
creating the tables at the start of the application. Then use insert...select to 
populate them, and truncate table to remove all the data rows. Although 
insert...select requires logging and is slower than select into, it can provide 
a solution to the locking problem.



CHAPTER 26    tempdb Performance Issues

627

Minimizing logging in tempdb
Even though the trunc log on checkpoint database option is turned on in 
tempdb, changes to tempdb are still written to the transaction log. You can 
reduce log activity in tempdb by:

• Using select into instead of create table and insert

• Selecting only the columns you need into the temporary tables

 With select into
When you create and populate temporary tables in tempdb, use the select 
into command, rather than create table and insert...select, whenever 
possible. The select into/bulkcopy database option is turned on by default 
in tempdb to enable this behavior.

select into operations are faster because they are only minimally logged. 
Only the allocation of data pages is tracked, not the actual changes for each 
data row. Each data insert in an insert...select query is fully logged, 
resulting in more overhead.

By using shorter rows
If the application creating tables in tempdb uses only a few columns of a 
table, you can minimize the number and size of log records by:

• Selecting just the columns you need for the application, rather than 
using select * in queries that insert data into the tables 

• Limiting the rows selected to just the rows that the applications 
requires

Both of these suggestions also keep the size of the tables themselves 
smaller.



Optimizing temporary tables 

628  

Optimizing temporary tables
Many uses of temporary tables are simple and brief and require little 
optimization. But if your applications require multiple accesses to tables 
in tempdb, you should examine them for possible optimization strategies. 
Usually, this involves splitting out the creation and indexing of the table 
from the access to it by using more than one procedure or batch.

When you create a table in the same stored procedure or batch where it is 
used, the query optimizer cannot determine how large the table is, the table 
has not yet been created when the query is optimized, as shown in 
Figure 26-3. This applies to both temporary tables and regular user tables. 

Figure 26-3: Optimizing and creating temporary tables

The optimizer assumes that any such table has 10 data pages and 100 rows. 
If the table is really large, this assumption can lead the optimizer to choose 
a suboptimal query plan.

These two techniques can improve the optimization of temporary tables:

• Creating indexes on temporary tables

Query optimized here

Table created here

Compile

Optimize

Parse and 
Normalize

Query

Results

Execute

Optimize

Compile



CHAPTER 26    tempdb Performance Issues

629

• Breaking complex use of temporary tables into multiple batches or 
procedures to provide information for the optimizer

Creating indexes on temporary tables
You can define indexes on temporary tables. In many cases, these indexes 
can improve the performance of queries that use tempdb. The optimizer 
uses these indexes just like indexes on ordinary user tables. The only 
requirements are:

• The table must contain data when the index is created. If you create 
the temporary table and create the index on an empty table, Adaptive 
Server does not create column statistics such as histograms and 
densities. If you insert data rows after creating the index, the 
optimizer has incomplete statistics.

• The index must exist while the query using it is optimized. You cannot 
create an index and then use it in a query in the same batch or 
procedure.

• The optimizer may choose a suboptimal plan if rows have been added 
or deleted since the index was created or since update statistics was 
run.

Providing an index for the optimizer can greatly increase performance, 
especially in complex procedures that create temporary tables and then 
perform numerous operations on them.

Creating nested procedures with temporary tables
You need to take an extra step to create the procedures described above. 
You cannot create base_proc until select_proc exists, and you cannot 
create select_proc until the temporary table exists. Here are the steps:

1 Create the temporary table outside the procedure. It can be empty; it 
just needs to exist and to have columns that are compatible with 
select_proc:

select * into #huge_result from ... where 1 = 2

2 Create the procedure select_proc, as shown above.

3 Drop #huge_result.



Optimizing temporary tables 

630  

4 Create the procedure base_proc.

Breaking tempdb uses into multiple procedures
For example, this query causes optimization problems with #huge_result:

create proc base_proc 
as
    select * 
        into #huge_result 
        from ...
    select * 
        from tab, 
        #huge_result where ...

You can achieve better performance by using two procedures. When the 
base_proc procedure calls the select_proc procedure, the optimizer can 
determine the size of the table:

create proc select_proc 
as
    select * 
        from tab, #huge_result where ...
create proc base_proc 
as
    select * 
        into #huge_result 
        from ...
    exec select_proc

If the processing for #huge_result requires multiple accesses, joins, or 
other processes, such as looping with while, creating an index on 
#huge_result may improve performance. Create the index in base_proc so 
that it is available when select_proc is optimized.



631

C H A P T E R  2 7 Cursors and Performance

This chapter discusses performance issues related to cursors. Cursors are 
a mechanism for accessing the results of a SQL select statement one row 
at a time (or several rows, if you use set cursors rows). Since cursors use 
a different model from ordinary set-oriented SQL, the way cursors use 
memory and hold locks has performance implications for your 
applications. In particular, cursor performance issues includes locking at 
the page and at the table level, network resources, and overhead of 
processing instructions. 

Definition
A cursor is a symbolic name that is associated with a select statement. It 
enables you to access the results of a select statement one row at a time. 
Figure 27-1 shows a cursor accessing the authors table. 

Topic Page
Definition 631

Resources required at each stage 634

Cursor modes 637

Index use and requirements for cursors 637

Comparing performance with and without cursors 639

Locking with read-only cursors 642

Isolation levels and cursors 644

Partitioned heap tables and cursors 644

Optimizing tips for cursors 645



Definition 

632  

Figure 27-1: Cursor example

You can think of a cursor as a “handle” on the result set of a select 
statement. It enables you to examine and possibly manipulate one row at 
a time.

Set-oriented versus row-oriented programming
SQL was conceived as a set-oriented language. Adaptive Server is 
extremely efficient when it works in set-oriented mode. Cursors are 
required by ANSI SQL standards; when they are needed, they are very 
powerful. However, they can have a negative effect on performance.

For example, this query performs the identical action on all rows that 
match the condition in the where clause:

update titles
    set contract = 1 
where type = ’business’

The optimizer finds the most efficient way to perform the update. In 
contrast, a cursor would examine each row and perform single-row 
updates if the conditions were met. The application declares a cursor for a 
select statement, opens the cursor, fetches a row, processes it, goes to the 
next row, and so forth. The application may perform quite different 
operations depending on the values in the current row, and the server’s 
overall use of resources for the cursor application may be less efficient 
than the server’s set level operations. However, cursors can provide more 
flexibility than set-oriented programming.

Figure 27-2 shows the steps involved in using cursors. The function of 
cursors is to get to the middle box, where the user or application code 
examines a row and decides what to do, based on its values.

Result setCursor with select * from authors 
where state = ’KY’

Programming can:
- Examine a row
- Take an action based on row values

 A978606525 Marcello Duncan KY                  

 A937406538 Carton Nita KY                                        

 A1525070956 Porczyk Howard KY                                 

 A913907285 Bier Lane KY 



CHAPTER 27    Cursors and Performance

633

Figure 27-2: Cursor flowchart

Example
Here is a simple example of a cursor with the “Process Rows” step shown 
above in pseudocode:

declare biz_book cursor
    for select * from titles
    where type = ’business’
go
open biz_book
go
fetch biz_book
go
/* Look at each row in turn and perform
** various tasks based on values, 

Declare cursor

Open cursor

Fetch row

Process row
(Examine/Update/Delete)

No

Yes

Close cursor

Deallocate cursor

Get next
row?



Resources required at each stage 

634  

** and repeat fetches, until
** there are no more rows
*/
close biz_book
go
deallocate cursor biz_book
go

Depending on the content of the row, the user might delete the current row:

delete titles where current of biz_book

or update the current row:

update titles set title="The Rich 
    Executive’s Database Guide"
where current of biz_book

Resources required at each stage
Cursors use memory and require locks on tables, data pages, and index 
pages. When you open a cursor, memory is allocated to the cursor and to 
store the query plan that is generated. While the cursor is open, Adaptive 
Server holds intent table locks and sometimes row or page locks. 
Figure 27-3 shows the duration of locks during cursor operations.



CHAPTER 27    Cursors and Performance

635

Figure 27-3: Resource use by cursor statement

The memory resource descriptions in Figure 27-3 and Table 27-1 refer to 
ad hoc cursors for queries sent by isql or Client-Library™. For other kinds 
of cursors, the locks are the same, but the memory allocation and 
deallocation differ somewhat depending on the type of cursor being used, 
as described in “Memory use and execute cursors” on page 636.

page
locks

Memory

Declare cursor

Open cursor

Fetch row

Process row
(Examine/Update/Delete)

No

Yes

Close cursor

Deallocate cursor

Get next
row?

Table
locks
(intent);
some
row or 

locks
page

Row 
or



Resources required at each stage 

636  

Table 27-1: Locks and memory use for isql and Client-Library client 
cursors

Memory use and execute cursors
The descriptions of declare cursor and deallocate cursor in Table 27-1 refer 
to ad hoc cursors that are sent by isql or Client-Library. Other kinds of 
cursors allocate memory differently:

• For cursors that are declared on stored procedures, only a small 
amount of memory is allocated at declare cursor time. Cursors 
declared on stored procedures are sent using Client-Library or the 
precompiler and are known as execute cursors. 

• For cursors declared within a stored procedure, memory is already 
available for the stored procedure, and the declare statement does not 
require additional memory.

Cursor 
command Resource use

declare cursor When you declare a cursor, Adaptive Server uses only 
enough memory to store the query text.

open When you open a cursor, Adaptive Server allocates 
memory to the cursor and to store the query plan that is 
generated. The server optimizes the query, traverses 
indexes, and sets up memory variables. The server does not 
access rows yet, unless it needs to build worktables. 
However, it does set up the required table-level locks (intent 
locks). Row and page locking behavior depends on the 
isolation level, server configuration, and query type.

See System Administration Guide for more information.

fetch When you execute a fetch, Adaptive Server gets the row(s) 
required and reads specified values into the cursor variables 
or sends the row to the client. If the cursor needs to hold 
lock on rows or pages, the locks are held until a fetch moves 
the cursor off the row or page or until the cursor is closed. 
The lock is either a shared or an update lock, depending on 
how the cursor is written.

close When you close a cursor, Adaptive Server releases the locks 
and some of the memory allocation. You can open the 
cursor again, if necessary. 

deallocate cursor When you deallocate a cursor, Adaptive Server releases the 
rest of the memory resources used by the cursor. To reuse 
the cursor, you must declare it again. 



CHAPTER 27    Cursors and Performance

637

Cursor modes
There are two cursor modes: read-only and update. As the names suggest, 
read-only cursors can only display data from a select statement; update 
cursors can be used to perform positioned updates and deletes. 

Read-only mode uses shared page or row locks. If read committed with lock 
is set to 0, and the query runs at isolation level 1, it uses instant duration 
locks, and does not hold the page or row locks until the next fetch.

Read-only mode is in effect when you specify for read only or when the 
cursor’s select statement uses distinct, group by, union, or aggregate 
functions, and in some cases, an order by clause.

Update mode uses update page or row locks. It is in effect when:

• You specify for update.

• The select statement does not include distinct, group by, union, a 
subquery, aggregate functions, or the at isolation read uncommitted 
clause.

• You specify shared.

If column_name_list is specified, only those columns are updatable.

For more information on locking during cursor processing, see System 
Administration Guide.

Specify the cursor mode when you declare the cursor. If the select 
statement includes certain options, the cursor is not updatable even if you 
declare it for update.

Index use and requirements for cursors
When a query is used in a cursor, it may require or choose different indexes 
than the same query used outside of a cursor.

Allpages-locked tables
For read-only cursors, queries at isolation level 0 (dirty reads) require a 
unique index. Read-only cursors at isolation level 1 or 3 should produce 
the same query plan as the select statement outside of a cursor. 



Index use and requirements for cursors 

638  

The index requirements for updatable cursors mean that updatable cursors 
may use different query plans than read-only cursors. Update cursors have 
these indexing requirements:

• If the cursor is not declared for update, a unique index is preferred 
over a table scan or a nonunique index.

• If the cursor is declared for update without a for update of list, a unique 
index is required on allpages-locked tables. An error is raised if no 
unique index exists.

• If the cursor is declared for update with a for update of list, then only 
a unique index without any columns from the list can be chosen on an 
allpages-locked table. An error is raised if no unique index qualifies.

When cursors are involved, an index that contains an IDENTITY column 
is considered unique, even if the index is not declared unique. In some 
cases, IDENTITY columns must be added to indexes to make them 
unique, or the optimizer might be forced to choose a suboptimal query 
plan for a cursor query.

Data-only-locked tables
In data-only-locked tables, fixed row IDs are used to position cursor scans, 
so unique indexes are not required for dirty reads or updatable cursors. The 
only cause for different query plans in updatable cursors is that table scans 
are used if columns from only useful indexes are included in the for update 
of list.

Table scans to avoid the Halloween problem

The Halloween problem is an update anomaly that can occur when a client 
using a cursor updates a column of the cursor result-set row, and that 
column defines the order in which the rows are returned from the table. For 
example, if a cursor was to use an index on last_name, first_name, and 
update one of these columns, the row could appear in the result set a 
second time. 

To avoid the Halloween problem on data-only-locked tables, Adaptive 
Server chooses a table scan when the columns from an otherwise useful 
index are included in the column list of a for update clause. 



CHAPTER 27    Cursors and Performance

639

For implicitly updatable cursors declared without a for update clause, and 
for cursors where the column list in the for update clause is empty, cursors 
that update a column in the index used by the cursor may encounter the 
Halloween problem.

Comparing performance with and without cursors
This section examines the performance of a stored procedure written two 
different ways:

• Without a cursor – this procedure scans the table three times, 
changing the price of each book.

• With a cursor – this procedure makes only one pass through the table.

In both examples, there is a unique index on titles(title_id).

Sample stored procedure without a cursor
This is an example of a stored procedure without cursors:

/* Increase the prices of books in the
** titles table as follows:
** 
** If current price is <= $30, increase it by 20%
** If current price is > $30 and <= $60, increase 
** it by 10%
** If current price is > $60, increase it by 5%
**
** All price changes must take effect, so this is
** done in a single transaction.
*/

create procedure increase_price
as

    /* start the transaction */
    begin transaction
    /* first update prices > $60 */
    update titles
        set price = price * 1.05
        where price > $60



Comparing performance with and without cursors 

640  

    /* next, prices between $30 and $60 */
    update titles 
        set price = price * 1.10    
    where price > $30 and price <= $60

    /* and finally prices <= $30 */
    update titles 
    set price = price * 1.20
    where price <= $30

    /* commit the transaction */ 
    commit transaction

return

Sample stored procedure with a cursor
This procedure performs the same changes to the underlying table as the 
procedure written without a cursor, but it uses cursors instead of set-
oriented programming. As each row is fetched, examined, and updated, a 
lock is held on the appropriate data page. Also, as the comments indicate, 
each update commits as it is made, since there is no explicit transaction.

/* Same as previous example, this time using a 
** cursor. Each update commits as it is made.
*/
create procedure increase_price_cursor
as
declare @price money

/* declare a cursor for the select from titles */
declare curs cursor for 
    select price 
    from titles 
    for update of price

/* open the cursor */
open curs

/* fetch the first row */
fetch curs into @price

/* now loop, processing all the rows
** @@sqlstatus = 0 means successful fetch



CHAPTER 27    Cursors and Performance

641

** @@sqlstatus = 1 means error on previous fetch
** @@sqlstatus = 2 means end of result set reached
*/
while (@@sqlstatus != 2)
begin    
    /* check for errors */
    if (@@sqlstatus = 1)
    begin
        print "Error in increase_price"
        return
    end
    
    /* next adjust the price according to the 
    ** criteria 
    */
    if @price > $60
    select @price = @price * 1.05
    else
    if @price > $30 and @price <= $60
    select @price = @price * 1.10
    else
    if @price <= $30 
    select @price = @price * 1.20

    /* now, update the row */
    update titles
    set price = @price
    where current of curs
    
    /* fetch the next row */
    fetch curs into @price
end

/* close the cursor and return */
close curs
return

Which procedure do you think will have better performance, one that 
performs three table scans or one that performs a single scan via a cursor?

Cursor versus noncursor performance comparison
Table 27-2 shows statistics gathered against a 5000-row table. The cursor 
code takes over 4 times longer, even though it scans the table only once.



Locking with read-only cursors 

642  

Table 27-2: Sample execution times against a 5000-row table

Results from tests like these can vary widely. They are most pronounced 
on systems that have busy networks, a large number of active database 
users, and multiple users accessing the same table.

In addition to locking, cursors involve more network activity than set 
operations and incur the overhead of processing instructions. The 
application program needs to communicate with Adaptive Server 
regarding every result row of the query. This is why the cursor code took 
much longer to complete than the code that scanned the table three times.

Cursor performance issues include:

• Locking at the page and table level

• Network resources

• Overhead of processing instructions

If there is a set-level programming equivalent, it may be preferable, even 
if it involves multiple table scans.

Locking with read-only cursors
Here is a piece of cursor code you can use to display the locks that are set 
up at each point in the life of a cursor. The following example uses an 
allpages-locked table. Execute the code in Figure 27-4, and pause at the 
arrows to execute sp_lock and examine the locks that are in place. 

Procedure Access method Time

increase_price Uses three table scans 28 seconds

increase_price_cursor Uses cursor, single table 
scan

125 seconds



CHAPTER 27    Cursors and Performance

643

Figure 27-4: Read-only cursors and locking experiment input

Table 27-3 shows the results.

Table 27-3: Locks held on data and index pages by cursors

If you issue another fetch command after the last row of the result set has 
been fetched, the locks on the last page are released, so there will be no 
cursor-related locks.

With a data-only-locked table:

• If the cursor query runs at isolation level 1, and read committed with 
lock is set to 0, you do not see any page or row locks. The values are 
copied from the page or row, and the lock is immediately released.

• If read committed with lock is set to 1 or if the query runs at isolation 
level 2 or 3, you see either shared page or shared row locks at the point 
that Table 27-3 indicates shared page locks. If the table uses datarows 
locking, the sp_lock report includes the row ID of the fetched row.

Event Data page

After declare No cursor-related locks. 

After open Shared intent lock on authors.

After first fetch Shared intent lock on authors and shared page lock on 
a page in authors. 

After 100 fetches Shared intent lock on authors and shared page lock on 
a different page in authors.

After close No cursor-related locks.

declare curs1 cursor for
select au_id, au_lname, au_fname
    from authors
    where au_id like ’15%’
    for read only
go
open curs1
go
fetch curs1
go
fetch curs1
go 100
close curs1
go
deallocate cursor curs1
go



Isolation levels and cursors 

644  

Isolation levels and cursors
The query plan for a cursor is compiled and optimized when the cursor is 
opened. You cannot open a cursor and then use set transaction isolation 
level to change the isolation level at which the cursor operates.

Since cursors using isolation level 0 are compiled differently from those 
using other isolation levels, you cannot open a cursor at isolation level 0 
and open or fetch from it at level 1 or 3. Similarly, you cannot open a 
cursor at level 1 or 3 and then fetch from it at level 0. Attempts to fetch 
from a cursor at an incompatible level result in an error message.

Once the cursor has been opened at a particular isolation level, you must 
deallocate the cursor before changing isolation levels. The effects of 
changing isolation levels while the cursor is open are as follows:

• Attempting to close and reopen the cursor at another isolation level 
fails with an error message.

• Attempting to change isolation levels without closing and reopening 
the cursor has no effect on the isolation level in use and does not 
produce an error message.

You can include an at isolation clause in the cursor to specify an isolation 
level. The cursor in the example below can be declared at level 1 and 
fetched from level 0 because the query plan is compatible with the 
isolation level:

declare cprice cursor for
select title_id, price
    from titles 
    where type = "business"
    at isolation read uncommitted

Partitioned heap tables and cursors
A cursor scan of an unpartitioned heap table can read all data up to and 
including the final insertion made to that table, even if insertions took 
place after the cursor scan started.



CHAPTER 27    Cursors and Performance

645

If a heap table is partitioned, data can be inserted into one of the many page 
chains. The physical insertion point may be before or after the current 
position of a cursor scan. This means that a cursor scan against a 
partitioned table is not guaranteed to scan the final insertions made to that 
table.

Note  If your cursor operations require all inserts to be made at the end of 
a single page chain, do not partition the table used in the cursor scan.

Optimizing tips for cursors
Here are several optimizing tips for cursors:

• Optimize cursor selects using the cursor, not an ad hoc query.

• Use union or union all instead of or clauses or in lists.

• Declare the cursor’s intent.

• Specify column names in the for update clause.

• Fetch more than one row if you are returning rows to the client.

• Keep cursors open across commits and rollbacks.

• Open multiple cursors on a single connection.

Optimizing for cursor selects using a cursor
A standalone select statement may be optimized very differently than the 
same select statement in an implicitly or explicitly updatable cursor. When 
you are developing applications that use cursors, always check your query 
plans and I/O statistics using the cursor, rather than using a standalone 
select. In particular, index restrictions of updatable cursors require very 
different access methods.



Optimizing tips for cursors 

646  

Using union instead of or clauses or in lists
Cursors cannot use the dynamic index of row IDs generated by the OR 
strategy. Queries that use the OR strategy in standalone select statements 
usually perform table scans using read-only cursors. Updatable cursors 
may need to use a unique index and still require access to each data row, 
in sequence, in order to evaluate the query clauses.

See “Access Methods and Costing for or and in Clauses” on page 451 for 
more information.

A read-only cursor using union creates a worktable when the cursor is 
declared, and sorts it to remove duplicates. Fetches are performed on the 
worktable. A cursor using union all can return duplicates and does not 
require a worktable. 

Declaring the cursor’s intent
Always declare a cursor’s intent: read-only or updatable. This gives you 
greater control over concurrency implications. If you do not specify the 
intent, Adaptive Server decides for you, and very often it chooses 
updatable cursors. Updatable cursors use update locks, thereby preventing 
other update locks or exclusive locks. If the update changes an indexed 
column, the optimizer may need to choose a table scan for the query, 
resulting in potentially difficult concurrency problems. Be sure to examine 
the query plans for queries that use updatable cursors.

Specifying column names in the for update clause
Adaptive Server acquires update locks on the pages or rows of all tables 
that have columns listed in the for update clause of the cursor select 
statement. If the for update clause is not included in the cursor declaration, 
all tables referenced in the from clause acquire update locks.

The following query includes the name of the column in the for update 
clause, but acquires update locks only on the titles table, since price is 
mentioned in the for update clause. The table uses allpages locking. The 
locks on authors and titleauthor are shared page locks:

declare curs3 cursor
for
select au_lname, au_fname, price
    from titles t, authors a,



CHAPTER 27    Cursors and Performance

647

        titleauthor ta
where advance <= $1000 
    and t.title_id = ta.title_id
    and a.au_id = ta.au_id
for update of price

Table 27-4 shows the effects of:

• Omitting the for update clause entirely—no shared clause

• Omitting the column name from the for update clause

• Including the name of the column to be updated in the for update 
clause

• Adding shared after the name of the titles table while using for update 
of price

In this table, the additional locks, or more restrictive locks for the two 
versions of the for update clause are emphasized.

Table 27-4: Effects of for update clause and shared on cursor 
locking

Using set cursor rows
The SQL standard specifies a one-row fetch for cursors, which wastes 
network bandwidth. Using the set cursor rows query option and Open 
Client’s transparent buffering of fetches, you can improve performance:

ct_cursor(CT_CURSOR_ROWS)

Be careful when you choose the number of rows returned for frequently 
executed applications using cursors—tune them to the network.

Clause titles authors titleauthor

None

sh_page on data

sh_page on index

sh_page on data sh_page on data

for update updpage on index

updpage on data

updpage on index

updpage on data updpage on data

for update of 
price updpage on data

sh_page on index

sh_page on data sh_page on data

for update of 
price
+ shared

sh_page on data

sh_page on index

sh_page on data sh_page on data



Optimizing tips for cursors 

648  

See “Changing network packet sizes” on page 16 for an explanation of 
this process.

Keeping cursors open across commits and rollbacks
ANSI closes cursors at the conclusion of each transaction. Transact- SQL 
provides the set option close on endtran for applications that must meet 
ANSI behavior. By default, however, this option is turned off. Unless you 
must meet ANSI requirements, leave this option off to maintain 
concurrency and throughput.

If you must be ANSI-compliant, decide how to handle the effects on 
Adaptive Server. Should you perform a lot of updates or deletes in a single 
transaction? Or should you keep the transactions short?

If you choose to keep transactions short, closing and opening the cursor 
can affect throughput, since Adaptive Server needs to rematerialize the 
result set each time the cursor is opened. Choosing to perform more work 
in each transaction, this can cause concurrency problems, since the query 
holds locks.

Opening multiple cursors on a single connection
Some developers simulate cursors by using two or more connections from 
DB-Library™. One connection performs a select and the other performs 
updates or deletes on the same tables. This has very high potential to create 
application deadlocks. For example:

• Connection A holds a shared lock on a page. As long as there are rows 
pending from Adaptive Server, a shared lock is kept on the current 
page.

• Connection B requests an exclusive lock on the same pages and then 
waits.

• The application waits for Connection B to succeed before invoking 
whatever logic is needed to remove the shared lock. But this never 
happens.

Since Connection A never requests a lock that is held by Connection B, 
this is not a server-side deadlock.



649

C H A P T E R  2 8 Introduction to Abstract Plans

This chapter provides an overview of abstract plans. 

Definition
Adaptive Server can generate an abstract plan for a query, and save the 
text and its associated abstract plan in the sysqueryplans system table. 
Using a rapid hashing method, incoming SQL queries can be compared to 
saved query text, and if a match is found, the corresponding saved abstract 
plan is used to execute the query.

An abstract plan describes the execution plan for a query using a language 
created for that purpose. This language contains operators to specify the 
choices and actions that can be generated by the optimizer. For example, 
to specify an index scan on the titles table, using the index title_id_ix, the 
abstract plan says:

( i_scan title_id_ix titles)

Abstract plans provide a means for System Administrators and 
performance tuners to protect the overall performance of a server from 
changes to query plans. Changes in query plans can arise due to:

• Adaptive Server software upgrades that affect optimizer choices and 
query plans

• New Adaptive Server features that change query plans

Topic Page
Definition 649

Managing abstract plans 650

Relationship between query text and query plans 650

Full versus partial plans 651

Abstract plan groups 653

How abstract plans are associated with queries 654



Managing abstract plans 

650  

• Changing tuning options such as the parallel degree, table 
partitioning, or indexing

The major purpose of abstract plans is to provide a means to capture query 
plans before and after major system changes. The sets of before-and-after 
query plans can be compared to determine the effects of changes on your 
queries. Other uses include:

• Searching for specific types of plans, such as table scans or 
reformatting

• Searching for plans that use particular indexes

• Specifying full or partial plans for poorly-performing queries

• Saving plans for queries with long optimization times

Abstract plans provide an alternative to options that must be specified in 
the batch or query in order to influence optimizer decisions. Using abstract 
plans, you can influence the optimization of a SQL statement without 
having to modify the statement syntax. While matching query text to 
stored text requires some processing overhead, using a saved plan reduces 
query optimization overhead.

Managing abstract plans
A full set of system procedures allows System Administrators and 
Database Owners to administer plans and plan groups. Individual users 
can view, drop, and copy the plans for the queries that they have run. 

See Chapter 31, “Managing Abstract Plans with System Procedures.”

Relationship between query text and query plans
For most SQL queries, there are many possible query execution plans. 
SQL describes the desired result set, but does not describe how that result 
set should be obtained from the database. Consider a query that joins three 
tables, such as this:

select t1.c11, t2.c21
from t1, t2, t3



CHAPTER 28    Introduction to Abstract Plans

651

where t1.c11 = t2.c21
and t1.c11 = t3.c31

There are many different possible join orders, and depending on the 
indexes that exist on the tables, many possible access methods, including 
table scans, index scans, and the reformatting strategy. Each join may use 
either a nested-loop join or a merge join. These choices are determined by 
the optimizer’s query costing algorithms, and are not included in or 
specified in the query itself.

When you capture the abstract plan, the query is optimized in the usual 
way, except that the optimizer also generates an abstract plan, and saves 
the query text and abstract plan in sysqueryplans. 

Limits of options for influencing query plans
Adaptive Server provides other options for influencing optimizer choices:

• Session-level options such as set forceplan to force join order or set 
parallel_degree to specify the maximum number of worker processes 
to use for the query

• Options that can be included in the query text to influence the index 
choice, cache strategy, and parallel degree

There are some limitations to using set commands or adding hints to the 
query text:

• Not all query plan steps can be influenced, for example, subquery 
attachment

• Some query-generating tools do not support the in-query options or 
require all queries to be vendor-independent

Full versus partial plans
Abstract plans can be full plans, describing all query processing steps and 
options, or they can be partial plans. A partial plan might specify that an 
index is to be used for the scan of a particular table, without specifying the 
index name or the join order for the query. For example:

select t1.c11, t2.c21
from t1, t2, t3



Full versus partial plans 

652  

where t1.c11 = t2.c21
and t1.c11 = t3.c31

The full abstract plan includes:

• The join type, either nl_g_join for nested-loop joins, or m_g_join for 
merge joins. The plan for this query specifies a nested-loop join.

• The join order, included in the nl_g_join clause.

• The type of scan, t_scan for table scan or i_scan for index scan.

• The name of the index chosen for the tables that are accessed via an 
index scan.

• The scan properties: the parallel degree, I/O size, and cache strategy 
for each table in the query.

The abstract plan for the query above specifies the join order, the access 
method for each table in the query, and the scan properties for each table:

( nl_g_join 
    ( t_scan t2 ) 
    ( i_scan t1_c11_ix t1 ) 
    ( i_scan t3_c31_ix t3 ) 
) 
( prop t3 
    ( parallel 1 ) 
    ( prefetch 16 ) 
    ( lru ) 
) 
( prop t1 
    ( parallel 1 ) 
    ( prefetch 16 ) 
    ( lru ) 
) 
( prop t2 
    ( parallel 1 ) 
    ( prefetch 16 ) 
    ( lru ) 
)   

Chapter 32, “Abstract Plan Language Reference,” provides a reference to 
the abstract plan language and syntax.



CHAPTER 28    Introduction to Abstract Plans

653

Creating a partial plan
When abstract plans are captured, full abstract plans are generated and 
stored. You can write partial plans to affect only a subset of the optimizer 
choices. If the query above had not used the index on t3, but all other parts 
of the query plan were optimal, you could create a partial plan for the 
query using the create plan command. This partial plan specifies only the 
index choice for t3:

create plan
"select t1.c11, t2.c21
from t1, t2, t3
where t1.c11 = t2.c21
and t1.c11 = t3.c31"
"( i_scan t3_c31_ix t3 )"

You can also create abstract plans with the plan clause for select, delete, 
update, and other commands that can be optimized. 

See “Creating plans using SQL” on page 690.

Abstract plan groups
When you first install Adaptive Server, there are two abstract plan groups:

• ap_stdout, used by default for capturing plans

• ap_stdin, used by default for plan association

A System Administrator can enable server-wide plan capture to ap_stdout, 
so that all query plans for all queries are captured. Server-wide plan 
association uses queries and plans from ap_stdin. If some queries require 
specially-tuned plans, they can be made available server-wide.

A System Administrator or Database Owner can create additional plan 
groups, copy plans from one group to another, and compare plans in two 
different groups. 

The capture of abstract plans and the association of abstract plans with 
queries always happens within the context of the currently-active plan 
group. Users can use session-level set commands to enable plan capture 
and association.

Some of the ways abstract plan groups can be used are:



How abstract plans are associated with queries 

654  

• A query tuner can create abstract plans in a group created for testing 
purposes without affecting plans for other users on the system

• Using plan groups, “before” and “after” sets of plans can be used to 
determine the effects of system or upgrade changes on query 
optimization.

See Chapter 30, “Creating and Using Abstract Plans,” for information on 
enabling the capture and association of plans.

How abstract plans are associated with queries
When an abstract plan is saved, all white space (returns, tabs, and multiple 
spaces) in the query is trimmed to a single space, and a hash-key value is 
computed for the white-space trimmed SQL statement. The trimmed SQL 
statement and the hash key are stored in sysqueryplans along with the 
abstract plan, a unique plan ID, the user’s ID, and the ID of the current 
abstract plan group. 

When abstract plan association is enabled, the hash key for incoming SQL 
statements is computed, and this value is used to search for the matching 
query and abstract plan in the current association group, with the 
corresponding user ID. The full association key of an abstract plans 
consists of:

• The user ID of the current user

• The group ID of the current association group

• The full query text

Once a matching hash key is found, the full text of the saved query is 
compared to the query to be executed, and used if it matches. 

The association key combination of user ID, group ID and query text 
means that for a given user, there cannot be two queries in the same 
abstract plan group that have the same query text, but different query 
plans.



655

C H A P T E R  2 9 Abstract Query Plan Guide

This chapter covers some guidelines you can use in writing Abstract 
Plans.

Introduction
Abstract plans allow you to specify the desired execution plan of a query. 
Abstract plans provide an alternative to the session-level and query level 
options that force a join order, or specify the index, I/O size, or other query 
execution options. The session-level and query-level options are 
described in Chapter 30, “Creating and Using Abstract Plans.”

There are several optimization decisions that cannot be specified with set 
commands or clauses included in the query text. Some examples are:

• Subquery attachment

• The join order for flattened subqueries 

• Reformatting 

In many cases, including set commands or changing the query text is not 
always possible or desired. Abstract plans provide an alternative, more 
complete method of influencing optimizer decisions.

Abstract plans are relational algebra expressions that are not included in 
the query text. They are stored in a system catalog and associated to 
incoming queries based on the text of these queries. 

Topic Page
Introduction 655

Tips on writing abstract plans 677

Comparing plans “before” and “after” 678

Abstract plans for stored procedures 680

Ad Hoc queries and abstract plans 681



Introduction 

656  

The tables used in this section are the same as those in Chapter 32, 
“Abstract Plan Language Reference.” See “Schema for examples” on 
page 712 for the create table and create index statements.

Abstract plan language
The abstract plan language is a relational algebra that uses these operators: 

• g_join, the generic join, a high-level logical join operator. It describes 
inner, outer and existence joins, using either nested-loop joins or sort-
merge joins. 

• nl_g_join, specifying a nested-loop join, including all inner, outer, and 
existence joins

• m_g_join, specifying a merge join, including inner and outer joins.

• union, a logical union operator. It describes both the union and the 
union all SQL constructs.

• scan, a logical operator that transforms a stored table in a flow of 
rows, a derived table. It allows partial plans that do not restrict the 
access method.

• i_scan, a physical operator, implementing scan. It directs the 
optimizer to use an index scan on the specified table.

• t_scan, a physical operator, implementing scan. It directs the 
optimizer to use a full table scan on the specified table.

• store, a logical operator, describing the materialization of a derived 
table in a stored worktable. 

• nested, a filter, describing the placement and structure of nested 
subqueries.

See “Schema for examples” on page 712 for the create table and create 
index commands used for the examples in this section.

Additional abstract plan keywords are used for grouping and 
identification:

• plan groups the elements when a plan requires multiple steps.

• hints groups a set of hints for a partial plan.

• prop introduces a set of scan properties for a table: prefetch, lru|mru 
and parallel.



CHAPTER 29    Abstract Query Plan Guide

657

• table identifies a table when correlation names are used, and in 
subqueries or views.

• work_t identifies a worktable.

• in, used with table, for identifying tables named in a subquery (subq) 
or view (view).

• subq is also used under the nested operator to indicate the attachment 
point for a nested subquery, and to introduce the subqueries abstract 
plan.

Queries, access methods, and abstract plans

For any specific table, there can be several access methods for a specific 
query: index scans using different indexes, table scans, the OR strategy, 
and reformatting are some examples. 

This simple query has several choices of access methods:

select * from t1 
where c11 > 1000 and c12 < 0

The following abstract plans specify three different access methods: 

• Use the index i_c11:

(i_scan i_c11 t1)

• Use the index i_c12:

(i_scan i_c12 t1)

• Do a full table scan:

(t_scan t1)

Abstract plans can be full plans, specifying all optimizer choices for a 
query, or can specify a subset of the choices, such as the index to use for a 
single table in the query, but not the join order for the tables. For example, 
using a partial abstract plan, you can specify that the query above should 
use some index and let the optimizer choose between i_c11 and i_c12, but 
not do a full table scan. The empty parentheses are used in place of the 
index name:

(i_scan () t1)

In addition, the query could use either 2K or 16K I/O, or be performed in 
serial or parallel. 



Introduction 

658  

Identifying tables
Abstract plans need to name all of a query’s tables in a non-ambiguous 
way, such that a table named in the abstract can be linked to its occurrence 
in the SQL query. In most cases, the table name is all that is needed. If the 
query qualifies the table name with the database and owner name, these 
are also needed to fully identify a table in the abstract plan. For example, 
this example used the unqualified table name:

select * from t1

The abstract plan also uses the unqualified name:

(t_scan t1)

If a database name and/or owner name are provided in the query:

select * from pubs2.dbo.t1

Then the abstract plan must also use the qualifications:

(t_scan pubs2.dbo.t1)

However, the same table may occur several times in the same query, as in 
this example:

select * from t1 a, t1 b 

Correlation names, a and b in the example above, identify the two tables 
in SQL. In an abstract plan, the table operator associates each correlation 
name with the occurrence of the table: 

( g_join 
        ( t_scan ( table ( a t1 ) ) ) 
        ( t_scan ( table ( b t1 ) ) ) 
)

Table names can also be ambiguous in views and subqueries, so the table 
operator is used for tables in views and subqueries.

For subqueries, the in and subq operators qualify the name of the table with 
its syntactical containment by the subquery. The same table is used in the 
outer query and the subquery in this example:

select * 
from t1 
where c11 in (select c12 from t1 where c11 > 100)

The abstract plan identifies them unambiguously:

( g_join 
    ( t_scan t1 ) 



CHAPTER 29    Abstract Query Plan Guide

659

    ( i_scan i_c11_c12 ( table t1 ( in ( subq 1 ) ) ) )
) 

For views, the in and view operators provide the identification. The query 
in this example references a table used in the view:

create view v1
as
select * from t1 where c12 > 100
select t1.c11 from t1, v1
    where t1.c12 = v1.c11

Here is the abstract plan: 

( g_join 
    ( t_scan t1 ) 
    ( i_scan i_c12 ( table t1 ( in ( view v1 ) ) ) )
) 

Identifying indexes
The i_scan operator requires two operands, the index name and the table 
name, as shown here:

( i_scan i_c12 t1 )

To specify that some index should be used, without specifying the index, 
substitute empty parenthesis for the index name:

( i_scan ( ) t1 )

Specifying join order
Adaptive Server performs joins of three or more tables by joining two of 
the tables, and joining the “derived table” from that join to the next table 
in the join order. This derived table is a flow of rows, as from an earlier 
nested-loop join in the query execution.

This query joins three tables: 

select * 
from t1, t2, t3
where c11 = c21 
    and c12 = c31
    and c22 = 0
    and c32 = 100



Introduction 

660  

This example shows the binary nature of the join algorithm, using g_join 
operators. The plan specifies the join order t2, t1, t3: 

(g_join
    (g_join
        (scan t2)
        (scan t1)
    )
    (scan t3)
)

The results of the t2-t1 join are then joined to t3. The scan operator in this 
example leaves the choice of table scan or index scan up to the optimizer. 

Shorthand notation for joins

In general, a N-way join, with the order t1, t2, t3..., tN-1, tN is described by: 

(g_join
    (g_join
        ...
            (g_join
                (g_join
                    (scan t1)
                    (scan t2)
                )
                (scan t3)
            )
        ...
        (scan tN-1)
    )
    (scan tN)
)

This notation can be used as shorthand for the g_join operator: 

(g_join
    (scan t1)
    (scan t2)
    (scan t3)
    ...
    (scan tN-1)
    (scan tN)
)

This notation can be used for g_join, and nl_g_join, and m_g_join. 



CHAPTER 29    Abstract Query Plan Guide

661

Join order examples

The optimizer could select among several plans for this three-way join 
query:

select * 
from t1, t2, t3
where c11 = c21 
    and c12 = c31
    and c22 = 0
    and c32 = 100

Here are a few examples:

• Use c22 as a search argument on t2, join with t1 on c11, then with t3 
on c31:

(g_join
    (i_scan i_c22 t2)
    (i_scan i_c11 t1)
    (i_scan i_c31 t3)
)

• Use the search argument on t3, and the join order t3, t1, t2:

(g_join
    (i_scan i_c32 t3)
    (i_scan i_c12 t1)
    (i_scan i_c21 t2)
)

• Do a full table scan of t2, if it is small and fits in cache, still using the 
join order t3, t1, t2:

(g_join
    (i_scan i_c32 t3)
    (i_scan i_c12 t1)
    (t_scan t2)
)

• If t1 is very large, and t2 and t3 individually qualify a large part of t1, 
but together a very small part, this plan specifies a STAR join:

(g_join
    (i_scan i_c22 t2)
    (i_scan i_c32 t3)
    (i_scan i_c11_c12 t1)
)

All of these plans completely constrain the choice of join order, letting the 
optimizer choose the type of join. 



Introduction 

662  

The generic g_join operator implements outer joins, inner joins, and 
existence joins. For examples of flattened subqueries that perform 
existence joins, see “Flattened subqueries” on page 668.

Match between execution methods and abstract plans

There are some limits to join orders and join types, depending on the type 
of query. One example is outer joins, such as:

select * from t1, t2
where c11 *= c21

Adaptive Server requires the outer member of the outer join to be the outer 
table during join processing. Therefore, this abstract plan is illegal:

(g_join
    (scan t2)
    (scan t1)
)

Attempting to use this plan results in an error message, and the query is not 
compiled.

Specifying join order for queries using views

You can use abstract plans to enforce the join order for merged views. This 
example creates a view. This view performs a join of t2 and t3: 

create view v2 
as 
select * 
from t2, t3
where c22 = c32

This query performs a join with the t2 in the view:

select * from t1, v2
where c11 = c21 
    and c22 = 0

This abstract plan specifies the join order t2, t1, t3:

(g_join
    (scan (table t2 (in (view v2))))
    (scan t1)
    (scan (table t3 (in (view v2))))
)

This example joins with t3 in the view:



CHAPTER 29    Abstract Query Plan Guide

663

select * from t1, v2
where c11 = c31 
    and c32 = 100

This plan uses the join order t3, t1, t2: 

(g_join
    (scan (table t3 (in (view v2))))
    (scan t1)
    (scan (table t2 (in (view v2))))
)

This is an example where abstract plans can be used, if needed, to affect 
the join order for a query, when set forceplan cannot.

Specifying the join type
Adaptive Server can perform either nested-loop or merge joins. The g_join 
operator leaves the optimizer free to choose the best join algorithm, based 
on costing. To specify a nested-loop join, use the nl_g_join operator; for a 
sort-merge join, use the m_g_join operator. Abstract plans captured by 
Adaptive Server always include the operator that specifies the algorithm, 
and not the g_join operator.

Note that the “g” that appears in each operator means “generic,” meaning 
that they apply to inner joins and outer joins; g_join and nl_g_join can also 
apply to existence joins.

This query specifies a join between t1 and t2: 

select * from t1, t2
    where c12 = c21 and c11 = 0

This abstract plan specifies a nested-loop join: 

(nl_g_join
    (i_scan i_c11 t1)
    (i_scan i_c21 t2)
)

The nested-loop plan uses the index i_c11  to limit the scan using the search 
clause, and then performs the join with t2, using the index on the join 
column.

This merge-join plan uses different indexes: 

(m_g_join
    (i_scan i_c12 t1)



Introduction 

664  

    (i_scan i_c21 t2)
)

The merge join uses the indexes on the join columns, i_c12  and i_c21, for 
the merge keys. This query performs a full-merge join and no sort is 
needed. 

A merge join could also use the index on i_c11  to select the rows from t1 
into a worktable; the merge uses the index on i_c21: 

(m_g_join
    (i_scan i11 t1)
    (i_scan i21 t2)
)

The step that creates the worktable is not specified in the plan; the 
optimizer detects when a worktable and sort are needed for join-key 
ordering.

Specifying partial plans and hints
There are cases when a full plan is not needed. For example, if the only 
problem with a query plan is that the optimizer chooses a table scan instead 
of using a nonclustered index, the abstract plan can specify only the index 
choice, and leave the other decisions to the optimizer. 

The optimizer could choose a table scan of t3 rather than using i_c31 for 
this query: 

select * 
from t1, t2, t3
where c11 = c21 
    and c12 < c31
    and c22 = 0
    and c32 = 100

The following plan, as generated by the optimizer, specifies join order t2, 
t1, t3. However, the plan specifies a table scan of t3:

(g_join
    (i_scan i_c22 t2)
    (i_scan i_c11 t1)
    (t_scan t3)
)

This full plan could be modified to specify the use of i_c31 instead:

(g_join



CHAPTER 29    Abstract Query Plan Guide

665

    (i_scan i_c22 t2)
    (i_scan i_c11 t1)
    (i_scan i_c31 t3)
)

However, specifying only a partial abstract plan is a more flexible 
solution. As data in the other tables of that query evolves, the optimal join 
order can change. The partial plan can specify just one partial plan item. 
For the index scan of t3, the partial plan is simply: 

(i_scan i_c31 t3)

The optimizer chooses the join order and the access methods for t1 and t2.

Grouping multiple hints

There may be cases where more than one plan fragment is needed. For 
example, you might want to specify that some index should be used for 
each table in the query, but leave the join order up to the optimizer. When 
multiple hints are needed, they can be grouped with the hints operator:

(hints
    (i_scan () t1)
    (i_scan () t2)
    (i_scan () t3)
)

In this case, the role of the hints operator is purely syntactic; it does not 
affect the ordering of the scans.

There are no limits on what may be given as a hint. Partial join orders may 
be mixed with partial access methods. This hint specifies that t2 is outer to 
t1 in the join order, and that the scan of t3 should use an index, but the 
optimizer can choose the index for t3, the access methods for t1 and t2, and 
the placement of t3 in the join order: 

(hints
    (g_join
        (scan t2)
        (scan t1)
    )
    (i_scan () t3)
)



Introduction 

666  

Inconsistent and illegal plans using hints

It is possible to describe inconsistent plans using hints, such as this plan 
that specifies contradictory join orders:

(hints
    (g_join
        (scan t2)
        (scan t1)
    )
    (g_join
        (scan t1)
        (scan t2)
    )
)

When the query associated with the plan is executed, the query cannot be 
compiled, and an error is raised. 

Other inconsistent hints do not raise an exception, but may use any of the 
specified access methods. This plan specifies both an index scan and a 
table scan for the same table:

(hints
    (t_scan t3)
    (i_scan () t3)
)

In this case, either method may be chosen, the behavior is indeterminate.

Creating abstract plans for subqueries
Subqueries are resolved in several ways in Adaptive Server, and the 
abstract plans reflect the query execution steps:

• Materialization – The subquery is executed and results are stored in a 
worktable or internal variable. See “Materialized subqueries” on page 
667. 

• Flattening – The query is flattened into a join with the tables in the 
main query. See “Flattened subqueries” on page 668. 

• Nesting – The subquery is executed once for each outer query row. 
See “Nested subqueries” on page 669.



CHAPTER 29    Abstract Query Plan Guide

667

Abstract plans do not allow the choice of the basic subquery resolution 
method. This is a rule-based decision and cannot be changed during query 
optimization. Abstract plans, however, can be used to influence the plans 
for the outer and inner queries. In nested subqueries, abstract plans can 
also be used to choose where the subquery is nested in the outer query.

Materialized subqueries

This query includes a non correlated subquery that can be materialized: 

select * 
from t1
where c11 = (select count(*) from t2)

The first step in the abstract plan materializes the scalar aggregate in the 
subquery. The second step uses the result to scan t1:

( plan 
    ( i_scan i_c21 ( table t2 ( in (subq 1 ) ) ) )
    ( i_scan i_c11 t1 ) 
) 

This query includes a vector aggregate in the subquery: 

select * 
from t1
where c11 in (select max(c21)
        from t2
        group by c22)

The abstract plan materializes the subquery in the first step, and joins it to 
the outer query in the second step:

( plan 
    ( store Worktab1 
        ( t_scan ( table t2 ( in (subq 1 ) ) ) )
    ) 
    ( nl_g_join 
        ( t_scan t1 ) 
        ( t_scan ( work_t Worktab1 ) ) 
    ) 
) 



Introduction 

668  

Flattened subqueries

Some subqueries can be flattened into joins. The g_join and nl_g_join 
operators leave it to the optimizer to detect when an existence join is 
needed. For example, this query includes a subquery introduced with 
exists: 

select * from t1
where c12 > 0 
    and exists (select * from t2 
            where t1.c11 = c21
                and c22 < 100)

The semantics of the query require an existence join between t1 and t2. The 
join order t1, t2 is interpreted by the optimizer as an existence join, with 
the scan of t2 stopping on the first matching row of t2 for each qualifying 
row in t1: 

(g_join
    (scan t1)
    (scan (table t2 (in (subq 1) ) )) 
)

The join order t2, t1 requires other means to guarantee the duplicate 
elimination:

(g_join
    (scan (table t2 (in (subq 1) ) ) )
    (scan t1)
)

Using this abstract plan, the optimizer can decide to use:

• A unique index on t2.c21, if one exists, with a regular join.

• The unique reformatting strategy, if no unique index exists. In this 
case, the query will probably use the index on c22 to select the rows 
into a worktable.

• The duplicate elimination sort optimization strategy, performing a 
regular join and selecting the results into the worktable, then sorting 
the worktable.

The abstract plan does not need to specify the creation and scanning of the 
worktables needed for the last two options.

For more information on subquery flattening, see “Flattening in, any, and 
exists subqueries” on page 494.



CHAPTER 29    Abstract Query Plan Guide

669

Example: changing the join order in a flattened subquery

The query can be flattened to an existence join: 

select * 
from t1, t2
where c11 = c21
    and c21 > 100
    and exists (select * from t3 
        where c31 != t1.c11)

The “!=” correlation can make the scan of t3 rather expensive. If the join 
order is t1, t2, the best place for t3 in the join order depends on whether the 
join of t1 and t2 increases or decreases the number of rows, and therefore, 
the number of times that the expensive table scan needs to be performed. 
If the optimizer fails to find the right join order for t3, the following 
abstract plan can be used when the join reduces the number of times that 
t3 must be scanned: 

(g_join
    (scan t1)
    (scan t2)
    (scan (table t3 (in (subq 1) ) ) )
)

If the join increases the number of times that t3 needs to be scanned, this 
abstract plan performs the scans of t3 before the join: 

(g_join
    (scan t1)
    (scan (table t3 (in (subq 1) ) ) )
    (scan t2)
)

Nested subqueries

Nested subqueries can be explicitly described in abstract plans:

• The abstract plan for the subquery is provided.

• The location at which the subquery attaches to the main query is 
specified.

Abstract plans allow you to affect the query plan for the subquery, and to 
change the attachment point for the subquery in the outer query. 



Introduction 

670  

The nested operator specifies the position of the subquery in the outer 
query. Subqueries are “nested over” a specific derived table. The optimizer 
chooses a spot where all the correlation columns for the outer query are 
available, and where it estimates that the subquery needs to be executed 
the least number of times.

The following SQL statement contains a correlated expression subquery: 

select * 
from t1, t2
where c11 = c21
    and c21 > 100
    and c12 = (select c31 from t3 
                where c32 = t1.c11)

The abstract plan shows the subquery nested over the scan of t1: 

( g_join 
    ( nested 
        ( i_scan i_c12 t1 ) 
        ( subq 1 
            (t_scan ( table t3 ( in ( subq 1 ) ) ) )
         ) 
    ) 
    ( i_scan i_c21 t2 ) 
) 

Subquery identification and attachment

Subqueries are identified with numbers, in the order of their leading 
opened parenthesis “(“. 

This example has two subqueries, one in the select list:

select 
    (select c11 from t1 where c12 = t3.c32), c31
from t3
where c32 > (select c22 from t2 where c21 = t3.c31)

In the abstract plan, the subquery containing t1 is named “1” and the 
subquery containing t2 is named “2”. Both subquery 1 and 2 are nested 
over the scan of t3:

( nested 
    ( nested 
        ( t_scan t3 ) 
        ( subq 1 
            ( i_scan i_c11_c12 ( table t1 (in ( subq 1 ) ) ) ) 



CHAPTER 29    Abstract Query Plan Guide

671

        ) 
    ) 
    ( subq 2 
        ( i_scan i_c21 ( table t2 ( in ( subq 2 ) ) ) ) 
    ) 
) 

In this query, the second subquery is nested in the first:

select * from t3 
where c32 > all 
    (select c11 from t1 where c12 > all 
        (select c22 from t2 where c21 = t3.c31)) 

In this case, the subquery containing t1 is also named “1” and the subquery 
containing t2 is named “2”. In this plan, subquery 2 is nested over the scan 
of t1, which is performed in subquery 1; subquery 1 is nested over the scan 
of t3 in the main query:

( nested 
    ( t_scan t3 ) 
    ( subq 1 
        ( nested 
            ( i_scan i_c11_c12 ( table t1 ( in ( subq 1 ) ) ) ) 
            ( subq 2 
                ( i_scan i_c21 ( table t2 ( in ( subq 2 ) ) ) ) 
            ) 
        ) 
    ) 

More subquery examples: reading ordering and attachment

The nested operator has the derived table as the first operand and the 
nested subquery as the second operand. This allows an easy vertical 
reading of the join order and subquery placement: 

select * 
from t1, t2, t3
where c12 = 0
    and c11 = c21
    and c22 = c32
    and 0 < (select c21 from t2 where c22 = t1.c11)

In the plan, the join order is t1, t2, t3, with the subquery nested over the 
scan of t1:

( g_join 
    ( nested 



Introduction 

672  

        ( i_scan i_c11 t1 ) 
        ( subq 1 
            ( t_scan ( table t2 ( in (subq 1 ) ) ) 
        ) 
    ) 
    ( i_scan i_c21 t2 ) 
    ( i_scan i_c32 t3 ) 
) 

Modifying subquery nesting

If you modify the attachment point for a subquery, you must choose a point 
at which all of the correlation columns are available.This query is 
correlated to both of the tables in the outer query:

select * 
from t1, t2, t3
where c12 = 0
    and c11 = c21
    and c22 = c32
    and 0 < (select c31 from t3 where c31 = t1.c11
                    and c32 = t2.c22)

This plan uses the join order t1, t2, t3, with the subquery nested over the 
t1-t2 join:

( g_join 
    ( nested 
        ( g_join 
            ( i_scan i_c11_c12 t1 ) 
            ( i_scan i_c22 t2 ) 
        ) 
        ( subq 1 
            ( t_scan ( table t3 ( in (subq 1 ) ) ) ) 
        ) 
    )
    ( i_scan i_c32 t3 ) 
) 

Since the subquery requires columns from both outer tables, it would be 
incorrect to nest it over the scan of t1 or the scan of t2; such errors are 
silently corrected during optimization.



CHAPTER 29    Abstract Query Plan Guide

673

Abstract plans for materialized views
This view is materialized during query processing: 

create view v3
as
select distinct * 
from t3

This query performs a join with the materialized view:

select * 
from t1, v3
where c11 = c31

A first step materializes the view v3  into a worktable. The second joins it 
with the main query table t1 :

( plan 
        ( store Worktab1 
                ( t_scan ( table t3 ( in (view v3 ) ) ) )
        ) 
        ( g_join 
                ( t_scan t1 ) 
                ( t_scan ( work_t Worktab1 ) ) 
        ) 
) 

Abstract plans for queries containing aggregates
This query returns a scalar aggregate: 

select max(c11) from t1

The first step computes the scalar aggregate and stores it in an internal 
variable. The second step is empty, as it only returns the variable, in a step 
with nothing to optimize:

( plan 
        ( t_scan t1 ) 
        ( ) 
)

Vector aggregates are also two-step queries: 

select max(c11)
from t1
group by c12



Introduction 

674  

The first step processes the aggregates into a worktable; the second step 
scans the worktable:

( plan 
        ( store Worktab1 
                ( t_scan t1 ) 
        )
        ( t_scan ( work_t Worktab1 ) ) 
) 

Nested aggregates are a Transact-SQL extension:

select max(count(*))
from t1
group by c11

The first step processes the vector aggregate into a worktable, the second 
scans it to process the nested scalar aggregate into an internal variable, and 
the third step returns the value. 

( plan 
     ( store Worktab1 
          ( i_scan i_c12 t1 ) 
     ) 
     ( t_scan ( work_t Worktab1 ) ) 
     ( ) 
) 

Extended columns in aggregate queries are a Transact-SQL extension:

select max(c11), c11
from t1
group by c12

The first step processes the vector aggregate; the second one joins it back 
to the base table to process the extended columns: 

( plan 
     ( store Worktab1 
          ( t_scan t1 ) 
     ) 
     ( g_join 
          ( t_scan t1 ) 
          ( i_scan i_c11 ( work_t Worktab1 ) ) 
     ) 
) 

This example contains an aggregate in a merged view: 

create view v4



CHAPTER 29    Abstract Query Plan Guide

675

as
select max(c11) as c41, c12 as c42
from t1
group by c12
select * from t2, v4
where c21 = 0
    and c22 > c41

The first step processes the vector aggregate; the second joins it to the 
main query table:

( plan 
    ( store Worktab1 
        ( t_scan ( table t1 ( in (view v4 ) ) ) )
    ) 
    ( g_join 
        ( i_scan i_c22 t2 ) 
        ( t_scan ( work_t Worktab1 ) ) 
    ) 
) 

This example includes an aggregate that is processed using a materialized 
view: 

create view v5
as
select distinct max(c11) as c51, c12 as c52
from t1
group by c12
select * from t2, v5
where c21 = 0
    and c22 > c51

The first step processes the vector aggregate into a worktable. The second 
step scans it into a second worktable to process the materialized view. The 
third step joins this second worktable in the main query:

( plan 
    ( store Worktab1 
        ( t_scan ( table t1 ( in (view v5 ) ) ) )
    ) 
    ( store Worktab2 
        ( t_scan ( work_t Worktab1 ) ) 
    ) 
    ( g_join 
        ( i_scan i_c22 t2 ) 
        ( t_scan ( work_t Worktab2 ) ) 
    ) 



Introduction 

676  

) 

Specifying the reformatting strategy
In this query, t2 is very large, and has no index: 

select *
from t1, t2
where c11 > 0
    and c12 = c21
    and c22 = 0

The abstract plan that specifies the reformatting strategy on t2 is:

( g_join
    (t_scan t1
    (scan
        (store Worktab1
            (t_scan t2)
        )
    )
)

In the case of the reformatting strategy, the store operator is an operand of 
scan. This is the only case when the store operator is not the operand of a 
plan operator. 

OR strategy limitation
The OR strategy has no matching abstract plan that describes the RID scan 
required to perform the final step. All abstract plans generated by Adaptive 
Server for the OR strategy specify only the scan operator. You cannot use 
abstract plans to influence index choice for queries that require the OR 
strategy to eliminate duplicates.

When the store operator is not specified
Some multistep queries that require worktables do not require multistep 
plans with a separate worktable step, and the use of the store operator to 
create the worktable. These are:

• The sort step of queries using distinct



CHAPTER 29    Abstract Query Plan Guide

677

• The worktables needed for merge joins

• Worktables needed for union queries

• The sort step, when a flattened subquery requires sort to remove 
duplicates

Tips on writing abstract plans
Here are some additional tips for writing and using abstract plans:

• Look at the current plan for the query and at plans that use the same 
query execution steps as the plan you need to write. It is often easier 
to modify an existing plan than to write a full plan from scratch.

• Capture the plan for the query.

• Use sp_help_qplan to display the SQL text and plan.

• Edit this output to generate a create plan command, or attach an 
edited plan to the SQL query using the plan clause.

• It is often best to specify partial plans for query tuning in cases where 
most optimizer decisions are appropriate, but only an index choice, 
for example, needs improvement. 

By using partial plans, the optimizer can choose other paths for other 
tables as the data in other tables changes.

• Once saved, abstract plans are static. Data volumes and distributions 
may change so that saved abstract plans are no longer optimal. 

Subsequent tuning changes made by adding indexes, partitioning a 
table, or adding buffer pools may mean that some saved plans are not 
performing as well as possible under current conditions. Most of the 
time, you want to operate with a small number of abstract plans that 
solve specific problems. 

Perform periodic plan checks to verify that the saved plans are still 
better than the plan that the optimizer would choose.



Comparing plans “before” and “after” 

678  

Comparing plans “before” and “after”
Abstract query plans can be used to assess the impact of an Adaptive 
Server software upgrade or system tuning changes on your query plans. 
You need to save plans before the changes are made, perform the upgrade 
or tuning changes, and then save plans again and compare the plans. The 
basic set of steps is:

1 Enable server-wide capture mode by setting the configuration 
parameter abstract plan dump to 1. All plans are then captured in the 
default group, ap_stdout.

2 Allow enough time for the captured plans to represent most of the 
queries run on the system. You can check whether additional plans are 
being generated by checking whether the count of rows in the 
ap_stdout group in sysqueryplans is stable:

select count(*) from sysqueryplans where gid = 2

3 Copy all plans from ap_stdout to ap_stdin (or some other group, if you 
do not want to use server-wide plan load mode), using 
sp_copy_all_qplans.

4 Drop all query plans from ap_stdout, using sp_drop_all_qplans.

5 Perform the upgrade or tuning changes.

6 Allow sufficient time for plans to be captured to ap_stdout.

7 Compare plans in ap_stdout and ap_stdin, using the diff mode 
parameter of sp_cmp_all_qplans. For example, this query compares 
all plans in ap_stdout and ap_stdin:

sp_cmp_all_qplans ap_stdout, ap_stdin, diff

This displays only information about the plans that are different in the 
two groups.

Effects of enabling server-wide capture mode
When server-wide capture mode is enabled, plans for all queries that can 
be optimized are saved in all databases on the server. Some possible 
system administration impacts are:



CHAPTER 29    Abstract Query Plan Guide

679

• When plans are captured, the plan is saved in sysqueryplans and log 
records are generated. The amount of space required for the plans and 
log records depends on the size and complexity of the SQL statements 
and query plans. Check space in each database where users will be 
active. 

You may need to perform more frequent transaction log dumps, 
especially in the early stages of server-wide capture when many new 
plans are being generated.

• If users execute system procedures from the master database, and 
installmaster was loaded with server-wide plan capture enabled, then 
plans for the statements that can be optimized in system procedures 
are saved in master..sysqueryplans. 

This is also true for any user-defined procedures created while plan 
capture was enabled. You may want to provide a default database at 
login for all users, including System Administrators, if space in 
master is limited.

• The sysqueryplans table uses datarows locking to reduce lock 
contention. However, especially when a large number of new plans 
are being saved, there may be a slight impact on performance.

• While server-wide capture mode is enabled, using bcp saves query 
plans in the master database. If you perform bcp using a large number 
of tables or views, check sysqueryplans and the transaction log in 
master.

Time and space to copy plans
If you have a large number of query plans in ap_stdout, be sure there is 
sufficient space to copy them on the system segment before starting the 
copy. Use sp_spaceused to check the size of sysqueryplans, and 
sp_helpsegment to check the size of the system segment.

Copying plans also requires space in the transaction log.

sp_copy_all_qplans calls sp_copy_qplan for each plan in the group to be 
copied. If sp_copy_all_qplans fails at any time due to lack of space or other 
problems, any plans that were successfully copied remain in the target 
query plan group.



Abstract plans for stored procedures 

680  

Abstract plans for stored procedures
For abstract plans to be captured for the SQL statements that can be 
optimized in stored procedures:

• The procedures must be created while plan capture or plan association 
mode is enabled. (This saves the text of the procedure in 
sysprocedures.)

• The procedure must be executed with plan capture mode enabled, and 
the procedure must be read from disk, not from the procedure cache. 

This sequence of steps captures the query text and abstract plans for all 
statements in the procedure that can be optimized:

set plan dump dev_plans on
go
create procedure myproc as ...
go
exec myproc
go

If the procedure is in cache, so that the plans for the procedure are not 
being captured, you can execute the procedure with recompile. Similarly, 
once a stored procedure has been executed using an abstract query plan, 
the plan in the procedure cache is used so that query plan association does 
not take place unless the procedure is read from disk.

Procedures and plan ownership
When plan capture mode is enabled, abstract plans for the statements in a 
stored procedure that can be optimized are saved with the user ID of the 
owner of the procedure. 

During plan association mode, association for stored procedures is based 
on the user ID of the owner of the procedure, not the user who executes the 
procedure. This means that once an abstract query plan is created for a 
procedure, all users who have permission to execute the procedure use the 
same abstract plan.



CHAPTER 29    Abstract Query Plan Guide

681

Procedures with variable execution paths and optimization
Executing a stored procedure saves abstract plans for each statement that 
can be optimized, even if the stored procedure contains control-of-flow 
statements that can cause different statements to be run depending on 
parameters to the procedure or other conditions. If the query is run a 
second time with different parameters that use a different code path, plans 
for any statements that were optimized and saved by the earlier execution, 
and the abstract plan for the statement is associated with the query.

However, abstract plans for procedures do not solve the problem with 
procedures with statements that are optimized differently depending on 
conditions or parameters. One example is a procedure where users provide 
the low and high values for a between clause, with a query such as:

select title_id
from titles
where price between @lo and @hi

Depending on the parameters, the best plan could either be index access or 
a table scan. For these procedures, the abstract plan may specify either 
access method, depending on the parameters when the procedure was first 
executed. For more information on optimization of procedures, see 
“Splitting stored procedures to improve costing” on page 403.

Ad Hoc queries and abstract plans
Abstract plan capture saves the full text of the SQL statement and abstract 
plan association is based on the full text of the SQL query. If users submit 
ad hoc SQL statements, rather than using stored procedures or Embedded 
SQL, abstract plans are saved for each different combination of query 
clauses. This can result in a very large number of abstract plans.

If users check the price of a specific title_id using select statements, an 
abstract plan is saved for each statement. The following two queries each 
generate an abstract plan:

select price from titles where title_id = "T19245"
select price from titles where title_id = "T40007"

In addition, there is one plan for each user, that is, if several users check 
for the title_id “T40007”, a plan is save for each user ID.

If such queries are included in stored procedures, there are two benefits:



Ad Hoc queries and abstract plans 

682  

• Only only one abstract plan is saved, for example, for the query:

select price from titles where title_id = 
@title_id

• The plan is saved with the user ID of the user who owns the stored 
procedure, and abstract plan association is made based on the 
procedure owner’s ID.

Using Embedded SQL, the only abstract plan is saved with the host 
variable:

select price from titles 
where title_id = :host_var_id



683

C H A P T E R  3 0 Creating and Using Abstract 
Plans

This chapter provides an overview of the commands used to capture 
abstract plans and to associate incoming SQL queries with saved plans. 
Any user can issue session-level commands to capture and load plans 
during a session, and a System Administrator can enable server-wide 
abstract plan capture and association. This chapter also describes how to 
specify abstract plans using SQL. 

Using set commands to capture and associate plans
At the session level, any user can enable and disable capture and use of 
abstract plans with the set plan dump and set plan load commands. The set 
plan replace command determines whether existing plans are overwritten 
by changed plans.

Enabling and disabling abstract plan modes takes effect at the end of the 
batch in which the command is included (similar to showplan). Therefore, 
change the mode in a separate batch before you run your queries:

set plan dump on
go
/*queries to run*/
go

Any set plan commands used in a stored procedure do not affect the 
procedure in which they are included, but remain in effect after the 
procedure completes.

Topic Page
Using set commands to capture and associate plans 683

set plan exists check option 688

Using Other set options with abstract plans 688

Server-wide abstract plan capture and association Modes 690

Creating plans using SQL 690



Using set commands to capture and associate plans 

684  

Enabling plan capture mode with set plan dump
The set plan dump command activates and deactivates the capture of 
abstract plans. You can save the plans to the default group, ap_stdout, by 
using set plan dump with no group name:

set plan dump on

To start capturing plans in a specific abstract plan group, specify the group 
name. This example sets the group dev_plans as the capture group:

set plan dump dev_plans on

The group that you specify must exist before you issue the set command. 
The system procedure sp_add_qpgroup creates abstract plan groups; only 
the System Administrator or Database Owner can create an abstract plan 
group. Once an abstract plan group exists, any user can dump plans to the 
group. See “Creating a group” on page 696 for information on creating a 
plan group.

To deactivate the capturing of plans, use:

set plan dump off

You do not need to specify a group name to end capture mode. Only one 
abstract plan group can be active for saving or matching abstract plans at 
any one time. If you are currently saving plans to a group, you must turn 
off the plan dump mode, and reenable it for the new group, as shown here:

set plan dump on /*save to the default group*/
go
/*some queries to be captured */
go
set plan dump off
go
set plan dump dev_plans on
go
/*additional queries*/
go

The use of the use database command while set plan dump is in effect 
disables plan dump mode.

Associating queries with stored plans
The set plan load command activates and deactivates the association of 
queries with stored abstract plans.



CHAPTER 30    Creating and Using Abstract Plans

685

To start the association mode using the default group, ap_stdin, use the 
command:

set plan load on

To enable association mode using another abstract plan group, specify the 
group name: 

set plan load test_plans on

Only one abstract plan group can be active for plan association at one time. 
If plan association is active for a group, you must deactivate the current 
group and start association for the new group, as shown here:

set plan load test_plans on
go
/*some queries*/
go
set plan load off
go
set plan load dev_plans on
go

The use of the use database command while set plan load is in effect 
disables plan load mode.

Using replace mode during plan capture
While plan capture mode is active, you can choose whether to have plans 
for the same query replace existing plans by enabling or disabling set plan 
replace. This command activates plan replacement mode:

set plan replace on

You do not specify a group name with set plan replace; it affects the current 
active capture group.

To disable plan replacement:

set plan replace off

The use of the use database command while set plan replace is in effect 
disables plan replace mode.



Using set commands to capture and associate plans 

686  

When to use replace mode

When you are capturing plans, and a query has the same query text as an 
already-saved plan, the existing plan is not replaced unless replace mode 
is enabled. If you have captured abstract plans for specific queries, and you 
are making physical changes to the database that affect optimizer choices, 
you need to replace existing plans for these changes to be saved.

Some actions that might require plan replacement are:

• Adding or dropping indexes, or changing the keys or key ordering in 
indexes

• Changing the partitioning on a table

• Adding or removing buffer pools

• Changing configuration parameters that affect query plans

For plans to be replaced, plan load mode should not be enabled in most 
cases. When plan association is active, any plan specifications are used as 
inputs to the optimizer. For example, if a full query plan includes the 
prefetch property and an I/O size of 2K, and you have created a 16K pool 
and want to replace the prefetch specification in the plan, do not enable 
plan load mode. 

You may want to check query plans and replace some abstract plans as 
data distribution changes in tables, or after rebuilds on indexes, updating 
statistics, or changing the locking scheme.

Using dump, load, and replace modes simultaneously
You can have both plan dump and plan load mode active simultaneously, 
with or without replace mode active.

Using dump and load to the same group

If you have enabled dump and load to the same group, without replace 
mode enabled:

• If a valid plan exists for the query, it is loaded and used to optimize 
the query.

• If a plan exists that is not valid (say, because an index has been 
dropped) a new plan is generated and used to optimize the query, but 
is not saved.



CHAPTER 30    Creating and Using Abstract Plans

687

• If the plan is a partial plan, a full plan is generated, but the existing 
partial plan is not replaced

• If a plan does not exist for the query, a plan is generated and saved.

With replace mode also enabled:

• If a valid plan exists for the query, it is loaded and used to optimize 
the query.

• If the plan is not valid, a new plan is generated and used to optimize 
the query, and the old plan is replaced.

• If the plan is a partial plan, a complete plan is generated and used, and 
the existing partial plan is replaced. The specifications in the partial 
plan are used as input to the optimizer.

• If a plan does not exist for the query, a plan is generated and saved.

Using dump and load to different groups

If you have dump enabled to one group, and load enabled from another 
group, without replace mode enabled:

• If a valid plan exists for the query in the load group, it is loaded and 
used. The plan is saved in the dump group, unless a plan for the query 
already exists in the dump group.

• If the plan in the load group is not valid, a new plan is generated. The 
new plan is saved in the dump group, unless a plan for the query 
already exists in the dump group.

• If the plan in the load group is a partial plan, a full plan is generated 
and saved in the dump group, unless a plan already exists. The 
specifications in the partial plan are used as input to the optimizer.

• If there is no plan for the query in the load group, the plan is generated 
and saved in the dump group, unless a plan for the query exists in the 
dump group.

With replace mode active:

• If a valid plan exists for the query in the load group, it is loaded and 
used. 

• If the plan in the load group is not valid, a new plan is generated and 
used to optimize the query. The new plan is saved in the dump group.



set plan exists check option 

688  

• If the plan in the load group is a partial plan, a full plan is generated 
and saved in the dump group. The specifications in the partial plan are 
used as input to the optimizer.

• If a plan does not exist for the query in the load group, a new plan is 
generated. The new plan is saved in the dump group.

set plan exists check option
The exists check mode can be used during query plan association to speed 
performance when users require abstract plans for fewer than 20 queries 
from an abstract plan group. If a small number of queries require plans to 
improve their optimization, enabling exists check mode speeds execution 
of all queries that do not have abstract plans, because they do not check for 
plans in sysqueryplans. 

When set plan load and set exists check are both enabled, the hash keys for 
up to 20 queries in the load group are cached for the user. If the load group 
contains more than 20 queries, exists check mode is disabled. Each 
incoming query is hashed; if its hash key is not stored in the abstract plan 
cache, then there is no plan for the query and no search is made. This 
speeds the compilation of all queries that do not have saved plans.

The syntax is: 

set plan exists check {on | off}

You must enable load mode before you enable plan hash-key caching.

A System Administrator can configure server-wide plan hash-key caching 
with the configuration parameter abstract plan cache. To enable server-
wide plan caching, use:

sp_configure "abstract plan cache", 1

Using Other set options with abstract plans
You can combine other set tuning options with set plan dump and set plan 
load.



CHAPTER 30    Creating and Using Abstract Plans

689

Using showplan
When showplan is turned on, and abstract plan association mode has been 
enabled with set plan load, showplan prints the plan ID of the matching 
abstract plan at the beginning of the showplan output for the statement:

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using an Abstract Plan (ID : 832005995).

If you run queries using the plan clause added to a SQL statement, 
showplan displays:

Optimized using the Abstract Plan in the PLAN clause.

Using noexec
You can use noexec mode to capture abstract plans without actually 
executing the queries. If noexec mode is in effect, queries are optimized 
and abstract plans are saved, but no query results are returned.

To use noexec mode while capturing abstract plans, execute any needed 
procedures (such as sp_add_qpgroup) and other set options (such as set 
plan dump) before enabling noexec mode. The following example shows a 
typical set of steps:

sp_add_qpgroup pubs_dev
go
set plan dump pubs_dev on
go
set noexec on
go
select type, sum(price) from titles group by type
go

Using forceplan
If set forceplan on is in effect, and query association is also enabled for the 
session, forceplan is ignored if a full abstract plan is used to optimize the 
query. If a partial plan does not completely specify the join order:

• First, the tables in the abstract plan are ordered, as specified.

• The remaining tables are ordered as specified in the from clause.

• The two lists of tables are merged.



Server-wide abstract plan capture and association Modes 

690  

Server-wide abstract plan capture and association 
Modes

A System Administrator can enable server-wide plan capture, association, 
and replacement modes with these configuration parameters: 

• abstract plan dump – enables dumping to the default abstract plans 
capture group, ap_stdout.

• abstract plan load – enables loading from the default abstract plans 
loading group, ap_stdin.

• abstract plan replace – when plan dump mode is also enabled, enables 
plan replacement.

• abstract plan cache – enables caching of abstract plan hash IDs; 
abstract plan load must also be enabled. See “set plan exists check 
option” on page 688 for more information.

By default, these configuration parameters are set to 0, which means that 
capture and association modes are off. To enable a mode, set the 
configuration value to 1:

sp_configure "abstract plan dump", 1

Enabling any of the server-wide abstract plan modes is dynamic; you do 
not have to reboot the server.

Server-wide capture and association allows the System Administrator to 
capture all plans for all users on a server. You cannot override he server-
wide modes at the session level.

Creating plans using SQL
You can directly specify the abstract plan for a query by:

• Using the create plan command

• Adding the plan clause to select, insert...select, update, delete and 
return commands, and to if and while clauses

For information on writing plans, see Chapter 29, “Abstract Query Plan 
Guide.”



CHAPTER 30    Creating and Using Abstract Plans

691

Using create plan
The create plan command specifies the text of a query, and the abstract 
plan to save for the query. 

This example creates an abstract plan:

create plan
    "select avg(price) from titles"
"( plan 
    ( i_scan type_price_ix titles ) 
    ( )
)"

The plan is saved in the current active plan group. You can also specify the 
group name:

create plan
    "select avg(price) from titles"
"( plan 
    ( i_scan type_price_ix titles ) 
    ( )
)"
into dev_plans

If a plan already exists for the specified query in the current plan group, or 
the plan group that you specify, you must first enable replace mode in 
order to overwrite the existing plan.

If you want to see the plan ID that is used for a plan you create, create plan 
can return the ID as a variable. You must declare the variable first. This 
example returns the plan ID:

declare @id int
create plan
    "select avg(price) from titles"
"( plan 
    ( i_scan type_price_ix titles ) 
    ( )
)"
into dev_plans
and set @id
select @id

When you use create plan, the query in the plan is not executed. This 
means that:

• The text of the query is not parsed, so the query is not checked for 
valid SQL syntax.



Creating plans using SQL 

692  

• The plans are not checked for valid abstract plan syntax.

• The plans are not checked to determine whether they are compatible 
with the SQL text.

To guard against errors and problems, you should immediately execute the 
specified query with showplan enabled.

Using the plan Clause
You can use the plan clause with the following SQL statements to specify 
the plan to use to execute the query:

• select 

• insert...select 

• delete 

• update 

• if 

• while 

• return 

This example specifies the plan to use to execute the query:

select avg(price) from titles
     plan
" ( plan
    ( i_scan type_price_ix titles )
    ( )
)"

When you specify an abstract plan for a query, the query is executed using 
the specified plan. If you have showplan enabled, this message is printed:

Optimized using the Abstract Plan in the PLAN clause.

When you use the plan clause with a query, any errors in the SQL text, the 
plan syntax, and any mismatches between the plan and the SQL text are 
reported as errors. For example, this plan omits the empty parentheses that 
specify the step of returning the aggregate:

/* step missing! */
select avg(price) from titles
     plan
" ( plan 



CHAPTER 30    Creating and Using Abstract Plans

693

    ( i_scan type_price titles )
)"

It returns the following message:

Msg 1005, Level 16, State 1:
Server ‘smj’, Line 2:
Abstract Plan (AP) : The number of operands of the PLAN operator 
in the AP differs from the number of steps needed to compute the 
query. The extra items will be ignored. Check the AP syntax and 
its correspondence to the query.

Plans specified with the plan clause are saved in sysqueryplans only if plan 
capture is enabled. If a plan for the query already exists in the current 
capture group, you must enable replace mode in order to replace an 
existing plan.



Creating plans using SQL 

694  



695

C H A P T E R  3 1 Managing Abstract Plans with 
System Procedures

This chapter provides an introduction to the basic functionality and use of 
the system procedures for working with abstract plans. For detailed 
information on each procedure, see the Adaptive Server Reference 
Manual.

System procedures for managing abstract plans
The system procedures for managing abstract plans work on individual 
plans or on abstract plan groups. 

• Managing an abstract plan group

• sp_add_qpgroup

• sp_drop_qpgroup

• sp_help_qpgroup

• sp_rename_qpgroup

• Finding abstract plans

• sp_find_qplan 

• Managing individual abstract plans

• sp_help_qplan

Topic Page
System procedures for managing abstract plans 695

Managing an abstract plan group 696

Finding abstract plans 700

Managing individual abstract plans 701

Managing all plans in a group 704

Importing and exporting groups of plans 708



Managing an abstract plan group 

696  

• sp_copy_qplan

• sp_drop_qplan

• sp_cmp_qplans

• sp_set_qplan

• Managing all plans in a group

• sp_copy_all_qplans

• sp_cmp_all_qplans

• sp_drop_all_qplans

• Importing and exporting groups of plans

• sp_export_qpgroup 

• sp_import_qpgroup 

Managing an abstract plan group
You can use system procedures to create, drop, rename, and provide 
information about an abstract plan group.

Creating a group
sp_add_qpgroup creates and names an abstract plan group. Unless you are 
using the default capture group, ap_stdout, you must create a plan group 
before you can begin capturing plans. For example, to start saving plans in 
a group called dev_plans, you must create the group, then issue the set plan 
dump command, specifying the group name:

sp_add_qpgroup dev_plans
set plan dump dev_plans on
/*SQL queries to capture*/

Only a System Administrator or Database Owner can add abstract plan 
groups. Once a group is created, any user can dump or load plans from the 
group. 



CHAPTER 31    Managing Abstract Plans with System Procedures

697

Dropping a group
sp_drop_qpgroup drops an abstract plan group. 

The following restrictions apply to sp_drop_qpgroup:

• Only a System Administrator or Database Owner can drop abstract 
plan groups.

• You cannot drop a group that contains plans. To remove all plans from 
a group, use sp_drop_all_qplans, specifying the group name. 

• You cannot drop the default abstract plan groups ap_stdin and 
ap_stdout.

This command drops the dev_plans plan group:

sp_drop_qpgroup dev_plans

Getting information about a group
sp_help_qpgroup prints information about an abstract plan group, or about 
all abstract plan groups in a database.

When you use sp_help_qpgroup without a group name, it prints the names 
of all abstract plan groups, the group IDs, and the number of plans in each 
group:

sp_help_qpgroup
Query plan groups in database ‘pubtune’
 Group                          GID         Plans       
 ------------------------------ ----------- ----------- 
 ap_stdin                                 1           0 
 ap_stdout                                2           2 
 p_prod                                   4           0 
 priv_test                                8           1 
 ptest                                    3          51 
 ptest2                                   7         189

When you use sp_help_qpgroup with a group name, the report provides 
statistics about plans in the specified group. This example reports on the 
group ptest2:

sp_help_qpgroup ptest2
Query plans group ’ptest2’, GID 7
 
 Total Rows  Total QueryPlans 



Managing an abstract plan group 

698  

 ----------- ---------------- 
         452              189 
sysqueryplans rows consumption, number of query 
plans per row count
 Rows        Plans       
 ----------- ----------- 
           5           2 
           3          68 
           2         119 
Query plans that use the most sysqueryplans rows
 Rows        Plan        
 ----------- ----------- 
           5  1932533918 
           5  1964534032 
 Hashkeys    
 ----------- 
         123 
There is no hash key collision in this group.

When reporting on an individual group, sp_help_qpgroup reports:

• The total number of abstract plans, and the total number of rows in the 
sysqueryplans table.

• The number of plans that have multiple rows in sysqueryplans. They 
are listed in descending order, starting with the plans with the largest 
number of rows.

• Information about the number of hash keys and hash-key collisions. 
Abstract plans are associated with queries by a hashing algorithm 
over the entire query.

When a System Administrator or the Database Owner executes 
sp_help_qpgroup, the procedure reports on all of the plans in the database 
or in the specified group. When any other user executes sp_help_qpgroup, 
it reports only on plans that he or she owns.

sp_help_qpgroup provides several report modes. The report modes are:

Mode Information returned

full The number of rows and number of plans in the group, the number of 
plans that use two or more rows, the number of rows and plan IDs for 
the longest plans, and number of hash keys, and has- key collision 
information. This is the default report mode.

stats All of the information from the full report, except hash-key 
information.



CHAPTER 31    Managing Abstract Plans with System Procedures

699

This example shows the output for the counts mode:

sp_help_qpgroup ptest1, counts
Query plans group ’ptest1’, GID 3

 Total Rows  Total QueryPlans 
 ----------- ---------------- 
          48               19 
 
Query plans in this group

Rows  Chars     hashkey     id          query                                 
----- --------- ----------- ----------- ---------------------------- 
    3      623  1801454852   876530156 select title from titles ... 
    3      576   476063777   700529529 select au_lname, au_fname... 
    3      513   444226348   652529358 select au1.au_lname, au1.... 
    3      470   792078608   716529586 select au_lname, au_fname... 
    3      430   789259291   684529472 select au1.au_lname, au1.... 
    3      425  1929666826   668529415 select au_lname, au_fname... 
    3      421   169283426   860530099 select title from titles ... 
    3      382   571605257   524528902 select pub_name from publ... 
    3      355   845230887   764529757 delete salesdetail where ... 
    3      347   846937663   796529871 delete salesdetail where ... 
    2      379  1400470361   732529643 update titles set price =... 

hash The number of rows and number of abstract plans in the group, the 
number of hash keys, and hash-key collision information.

list The number of rows and number of abstract plans in the group, and 
the following information for each query/plan pair: hash key, plan ID, 
first few characters of the query, and the first few characters of the 
plan.

queries The number of rows and number of abstract plans in the group, and 
the following information for each query: hash key, plan ID, first few 
characters of the query.

plans The number of rows and number of abstract plans in the group, and 
the following information for each plan: hash key, plan ID, first few 
characters of the plan.

counts The number of rows and number of abstract plans in the group, and 
the following information for each plan: number of rows, number of 
characters, hash key, plan ID, first few characters of the query.

Mode Information returned



Finding abstract plans 

700  

Renaming a group
A System Administrator or Database Owner can rename an abstract plan 
group with sp_rename_qpgroup. This example changes the name of the 
group from dev_plans to prod_plans:

sp_rename_qpgroup dev_plans, prod_plans

The new group name cannot be the name of an existing group.

Finding abstract plans
sp_find_qplan searches both the query text and the plan text to find plans 
that match a given pattern.

This example finds all plans where the query includes the string “from 
titles”:

sp_find_qplan "%from titles%"

This example searches for all abstract plans that perform a table scan:

sp_find_qplan "%t_scan%"

When a System Administrator or Database Owner executes sp_find_qplan, 
the procedure examines and reports on plans owned by all users. When 
other users execute the procedure, it searches and reports on only plans 
that they own.

If you want to search just one abstract plan group, specify the group name 
with sp_find_qplan. This example searches only the test_plans group, 
finding all plans that use a particular index:

sp_find_qplan "%i_scan title_id_ix%", test_plans

For each matching plan, sp_find_qplan prints the group ID, plan ID, query 
text, and abstract plan text.



CHAPTER 31    Managing Abstract Plans with System Procedures

701

Managing individual abstract plans
You can use system procedures to print the query and text of individual 
plans, to copy, drop, or compare individual plans, or to change the plan 
associated with a particular query.

Viewing a plan
sp_help_qplan reports on individual abstract plans. It provides three types 
of reports that you can specify: brief, full, and list. The brief report prints 
only the first 78 characters of the query and plan; use full to see the entire 
query and plan, or list to display only the first 20 characters of the query 
and plan.

This example prints the default brief report:

sp_help_qplan 588529130
 gid         hashkey     id          
 ----------- ----------- ----------- 
           8  1460604254   588529130 
 query                                                                          
 --------------------------------------------------------------- 
 select min(price) from titles                                                  
 plan                                                                           
--------------------------------------------------------------- 
 ( plan 
    ( i_scan type_price titles ) 
    ( ) 
) 
( prop titles 
    ( parallel ... 

A System Administrator or Database Owner can use sp_help_qplan to 
report on any plan in the database. Other users can only view the plans that 
they own.

sp_help_qpgroup reports on all plans in a group. For more information see 
“Getting information about a group” on page 697.



Managing individual abstract plans 

702  

Copying a plan to another group
sp_copy_qplan copies an abstract plan from one group to another existing 
group. This example copies the plan with plan ID 316528161 from its 
current group to the prod_plans group:

sp_copy_qplan 316528161, prod_plans

sp_copy_qplan checks to make sure that the query does not already exist 
in the destination group. If a possible conflict exists, it runs 
sp_cmp_qplans to check plans in the destination group. In addition to the 
message printed by sp_cmp_qplans, sp_copy_qplan prints messages when:

• The query and plan you are trying to copy already exists in the 
destination group

• Another plan in the group has the same user ID and hash key

• Another plan in the group has the same hash key, but the queries are 
different

If there is a hash-key collision, the plan is copied. If the plan already exists 
in the destination group or if it would give an association key collision, the 
plan is not copied. The messages printed by sp_copy_qplan contain the 
plan ID of the plan in the destination group, so you can use sp_help_qplan 
to check the query and plan.

A System Administrator or the Database Owner can copy any abstract 
plan. Other users can copy only plans that they own. The original plan and 
group are not affected by sp_copy_qplan. The copied plan is assigned a 
new plan ID, the ID of the destination group, and the user ID of the user 
who ran the query that generated the plan.

Dropping an individual abstract plan
sp_drop_qplan drops individual abstract plans. This example drops the 
specified plan:

sp_drop_qplan 588529130

A System Administrator or Database Owner can drop any abstract plan in 
the database. Other users can drop only plans that they own.

To find abstract plan IDs, use sp_find_qplan to search for plans using a 
pattern from the query or plan, or sp_help_qpgroup to list the plans in a 
group.



CHAPTER 31    Managing Abstract Plans with System Procedures

703

Comparing two abstract plans
Given two plan IDs, sp_cmp_qplans compares two abstract plans and the 
associated queries. For example:

sp_cmp_qplans 588529130, 1932533918

sp_cmp_qplans prints one message reporting the comparison of the query, 
and a second message about the plan, as follows:

• For the two queries, one of:

• The queries are the same. 

• The queries are different. 

• The queries are different but have the same hash key. 

• For the plans:

• The query plans are the same. 

• The query plans are different. 

This example compares two plans where the queries and plans both match:

sp_cmp_qplans 411252620, 1383780087
The queries are the same.
The query plans are the same.

This example compares two plans where the queries match, but the plans 
are different:

sp_cmp_qplans 2091258605, 647777465
The queries are the same.
The query plans are different.

sp_cmp_qplans returns a status value showing the results of the 
comparison. The status values are shown in Table 31-1

Table 31-1: Return status values for sp_cmp_qplans

A System Administrator or Database Owner can compare any two abstract 
plans in the database. Other users can compare only plans that they own.

Return value Meaning

0 The query text and abstract plans are the same.

+1 The queries and hash keys are different.

+2 The queries are different, but the hash keys are the same.

+10 The abstract plans are different.

100 One or both of the plan IDs does not exist.



Managing all plans in a group 

704  

Changing an existing plan
sp_set_qplan changes the abstract plan for an existing plan ID without 
changing the ID or the query text. It can be used only when the plan text 
is 255 or fewer characters.

sp_set_qplan 588529130, "( i_scan title_ix titles)"

A System Administrator or Database Owner can change the abstract plan 
for any saved query. Other users can modify only plans that they own.

When you execute sp_set_qplan, the abstract plan is not checked against 
the query text to determine whether the new plan is valid for the query, or 
whether the tables and indexes exist. To test the validity of the plan, 
execute the associated query.

You can also use create plan and the plan clause to specify the abstract plan 
for a query. See “Creating plans using SQL” on page 690.

Managing all plans in a group
These system procedures help manage groups of plans:

• sp_copy_all_qplans 

• sp_cmp_all_qplans 

• sp_drop_all_qplans 

Copying all plans in a group
sp_copy_all_qplans copies all of the plans in one abstract plan group to 
another group. This example copies all of the plans from the test_plans 
group to the helpful_plans group:

sp_copy_all_qplans test_plans, helpful_plans

The helpful_plans group must exist before you execute sp_copy_all_qplans. 
It can contain other plans.

sp_copy_all_qplans copies each plan in the group by executing 
sp_copy_qplan, so copying a plan may fail for the same reasons that 
sp_copy_qplan might fail. See “Comparing two abstract plans” on page 
703.



CHAPTER 31    Managing Abstract Plans with System Procedures

705

Each plan is copied as a separate transaction, and failure to copy any single 
plan does not cause sp_copy_all_qplans to fail. If sp_copy_all_qplans fails 
for any reason, and has to be restarted, you see a set of messages for the 
plans that have already been successfully copied, telling you that they exist 
in the destination group.

A new plan ID is assigned to each copied plan. The copied plans have the 
original user’s ID. To copy abstract plans and assign new user IDs, you 
must use sp_export_qpgroup and sp_import_qpgroup. See “Importing and 
exporting groups of plans” on page 708.

A System Administrator or Database Owner can copy all plans in the 
database. Other users can copy only plans that they own.

Comparing all plans in a group
sp_cmp_all_qplans compares all abstract plans in two groups and reports:

• The number of plans that are the same in both groups

• The number of plans that have the same association key, but different 
abstract plans

• The number of plans that are present in one group, but not the other

This example compares the plans in ap_stdout and ap_stdin:

sp_cmp_all_qplans ap_stdout, ap_stdin
If the two query plans groups are large, this might take some 
time.
Query plans that are the same
 count
 -----------
         338
Different query plans that have the same association key

 count
 -----------
          25
Query plans present only in group ’ap_stdout’ :

 count
 -----------
           0
Query plans present only in group ’ap_stdin’ :



Managing all plans in a group 

706  

 count
 -----------
           1

With the additional specification of a report-mode parameter, 
sp_cmp_all_qplans provides detailed information, including the IDs, 
queries, and abstract plans of the queries in the groups. The mode 
parameter lets you get the detailed information for all plans, or just those 
with specific types of differences.Table 31-2 shows the report modes and 
what type of information is reported for each mode.

Table 31-2: Report modes for sp_cmp_all_qplans

This example shows the brief report mode:

sp_cmp_all_qplans ptest1, ptest2, brief
If the two query plans groups are large, this might take 
some time.
Query plans that are the same
 count       
 ----------- 
          39 
Different query plans that have the same association key

Mode Reported information

counts The counts of: plans that are the same, plans that have the same 
association key, but different groups, and plans that exist in one 
group, but not the other. This is the default report mode.

brief The information provided by counts, plus the IDs of the abstract 
plans in each group where the plans are different, but the 
association key is the same, and the IDs of plans that are in one 
group, but not in the other.

same All counts, plus the IDs, queries, and plans for all abstract plans 
where the queries and plans match.

diff All counts, plus the IDs, queries, and plans for all abstract plans 
where the queries and plans are different.

first All counts, plus the IDs, queries, and plans for all abstract plans 
that are in the first plan group, but not in the second plan group.

second All counts, plus the IDs, queries, and plans for all abstract plans 
that are in the second plan group, but not in the first plan group.

offending All counts, plus the IDs, queries, and plans for all abstract plans 
that have different association keys or that do not exist in both 
groups. This is the combination of the diff, first, and second 
modes.

full All counts, plus the IDs, queries, and plans for all abstract plans. 
This is the combination of same and offending modes.



CHAPTER 31    Managing Abstract Plans with System Procedures

707

 count       
 ----------- 
           4 
 
    ptest1    ptest2

 id1         id2         
 ----------- ----------- 
   764529757  1580532664 
   780529814  1596532721 
   796529871  1612532778 
   908530270  1724533177 
Query plans present only in group ’ptest1’ :

 count       
 ----------- 
           3 
 

 id          
 ----------- 
   524528902 
  1292531638 
  1308531695 
 
Query plans present only in group ’ptest2’ :

 count       
 ----------- 
           1 
 

 id          
 ----------- 
  2108534545 

Dropping all abstract plans in a group
sp_drop_all_qplans drops all abstract plans in a group. This example drops 
all abstract plans in the dev_plans group:

sp_drop_all_qplans dev_plans



Importing and exporting groups of plans 

708  

When a System Administrator or the Database Owner executes 
sp_drop_all_qplans, all plans belonging to all users are dropped from the 
specified group. When another user executes this procedure, it affects only 
the plans owned by that users. 

Importing and exporting groups of plans
sp_export_qpgroup and sp_import_qpgroup copy groups of plans between 
sysqueryplans and a user table. This allows a System Administrator or 
Database Owner to:

• Copy abstract plans from one database to another on the same server

• Create a table that can be copied out of the current server with bcp, 
and copied into another server

• Assign different user IDs to existing plans in the same database

Exporting plans to a user table
sp_export_qpgroup copies all plans for a specific user from an abstract plan 
group to a user table. This example copies plans owned by the Database 
Owner (dbo) from the fast_plans group, creating a table called transfer:

sp_export_qpgroup dbo, fast_plans, transfer

sp_export_qpgroup uses select...into to create a table with the same 
columns and datatypes as sysqueryplans. If you do not have the 
select into/bulkcopy/pllsort option enabled in the database, you can specify 
the name of another database. This command creates the export table in 
tempdb:

sp_export_qpgroup mary, ap_stdout, "tempdb..mplans"

The table can be copied out using bcp, and copied into a table on another 
server. The plans can also be imported to sysqueryplans in another 
database on the same server, or the plans can be imported into 
sysqueryplans in the same database, with a different group name or user 
ID.



CHAPTER 31    Managing Abstract Plans with System Procedures

709

Importing plans from a user table
sp_import_qpgroup copies plans from tables created by sp_export_qpgroup 
into a group in sysqueryplans. This example copies the plans from the table 
tempdb..mplans into ap_stdin, assigning the user ID for the Database 
Owner:

sp_import_qpgroup "tempdb..mplans", dbo, ap_stdin

You cannot copy plans into a group that already contains plans for the 
specified user.



Importing and exporting groups of plans 

710  



711

C H A P T E R  3 2 Abstract Plan Language 
Reference

This chapter describes the operators and other language elements in the 
abstract plan language.

Keywords
The following words are keywords in the abstract query plan language. 
They are not reserved words, and do not conflict with the names of tables 
or indexes used in abstract plans. For example, a table or index may be 
named hints.

Operands
The following operands are used in the abstract plan syntax statements:

Topic Page
Keywords 711

Operands 711

Schema for examples 712



Schema for examples 

712  

Table 32-1: Identifiers used

table_name and view_name can be specified using the notation 
database.owner.object_name. 

Derived tables
A derived table is a result of access to a stored table during query 
execution. It can be:

• The result set generated by the query

• An intermediate result during query execution; that is, the result of the 
join of the first two tables in the join order, which is then   joined with 
a third table

Derived tables result from one of the scan operators that specify the access 
method: scan, i_scan, or t_scan, for example, (i_scan title_id_ix titles).

Schema for examples
To simplify the sample abstract plan examples, the following tables are 
used in this section:

create table t1 (c11 int, c12 int)
create table t2 (c21 int, c22 int)
create table t3 (c31 int, c32 int)

The following indexes are used:

create index i_c11 on t1(c11)

Identifier Describes

table_name The name of a base table, that is, a user or system table

correlation_name The correlation name specified for a table in a query

derived_table A table that results from the scan of a stored table

stored_table A base table or a worktable

worktable_name The name of a worktable

view_name The name of a view

index_name The name of an index

subquery_id An integer identifying the order of the subqueries in the 
query



CHAPTER 32    Abstract Plan Language Reference

713

create index i_c12 on t1(c12)
create index i_c11_c12 on t1(c11, c12)
create index i_c21 on t2(c21)
create index i_c22 on t2(c22)
create index i_c31 on t3(c31)
create index i_c32 on t3(c32)

g_join
Description Specifies the join of two or more derived tables without specifying the join 

type (nested-loop or sort-merge).

Syntax ( g_join derived_table1 derived_table2
)

( g_join ( derived_table1 )
( derived_table2 )
...

( derived_tableN )
)

Parameters derived_table1...derived_tableN
are the derived tables to be united.

Return value A derived table that is the join of the specified derived tables.

Examples Example 1 

select *
from t1, t2
where c21 = 0
and c22 = c12

 

( g_join
    ( i_scan i_c21 t2 )
    ( i_scan i_c12 t1 )
)

Table t2 is the outer table, and t1 the inner table in the join order.

Example 2  

select *
from t1, t2, t3
where c21 = 0
and c22 = c12



g_join 

714  

and c11 = c31

 

( g_join
    ( i_scan i_c21 t2 )
    ( i_scan i_c12 t1 )
    ( i_scan i_c31 t3 )
)

Table t2 is joined with t1, and the derived table is joined with t3.

Usage • The g_join operator is a generic logical operator that describes all 
binary joins (inner join, outer join, or existence join).

• The g_join operator is never used in generated plans; nl_g_join and 
m_g_join operators indicate the join type used.

• The optimizer chooses between a nested-loop join and a sort-merge 
join when the g_join operator is used. To specify a sort-merge join, use 
m_g_join. To specify a nested-loop join, use nl_g_join.

• The syntax provides a shorthand method of described a join involving 
multiple tables. This syntax:

( g_join
        ( scan t1)
        ( scan t2)
        ( scan t3)
        ...
        ( scan tN-1)
        ( scan tN)
)

is shorthand for:

( g_join
        ( g_join
                ...
                    ( g_join
                            (g_join
                                    ( scan t1)
                                    ( scan t2)
                            )
                            ( scan t3)
                    )
                ...
                ( scan tN-1)
        )
        ( scan tN)



CHAPTER 32    Abstract Plan Language Reference

715

)

• If g_join is used to specify the join order for some, but not all, of the 
tables in a query, the optimizer uses the join order specified, but may 
insert other tables between the g_join operands. For example, for this 
query:

select *
    from t1, t2, t3
    where ...

the following partial abstract plan describes only the join order of t1 
and t2:

( g_join
        ( scan t2)
        ( scan t1)
)

The optimizer can choose any of the three join orders: t3-t2-t1, t2-t3-
t1 or t2-t1-t3.

• The tables are joined in the order specified in the g_join clause.

• If set forceplan on is in effect, and query association is also enabled for 
the session, forceplan is ignored if a full abstract plan is used to 
optimize the query. If a partial plan does not completely specify the 
join order:

• First, the tables in the abstract plan are ordered as specified.

• The remaining tables are ordered as specified in the from clause.

• The two lists of tables are merged.

See also m_g_join, nl_g_join

hints
Description Introduces and groups items in a partial abstract plan.

Syntax ( hints ( derived_table ) 
     ...
)

Parameters derived_table
is one or more expressions that generate a derived table.



i_scan 

716  

Return value A derived table.

Examples select * 
from t1, t2
where c12 = c21
        and c11 > 0
        and c22 < 1000

 

( hints
    ( g_join 
        ( t_scan t2 )
        ( i_scan () t1 )
    )
)

Specifies a partial plan, including a table scan on t2, the use of some index 
on t1, and the join order t1-t2. The index choice for t1 and the type of join 
(nested-loop or sort-merge) is left to the optimizer.

Usage • The specified hints are used during query optimization.

• The hints operator appears as the root of a partial abstract plan that 
includes multiple steps. If a partial plan contains only one expression, 
hints is optional.

• The hints operator does not appear in plans generated by the 
optimizer; these are always full plans.

• Hints can be associated with queries:

• By changing the plan for an existing query with sp_set_qplan.

• By specifying the plan for a query with the plan clause. To save 
the query and hints, set plan dump must be enabled.

• By using the create plan command.

• When hints are specified in the plan clause for a SQL statement, the 
plans are checked to be sure they are valid. When hints are specified 
using sp_set_qplan, plans are not checked before being saved.

i_scan
Description Specifies an index scan of a base table.



CHAPTER 32    Abstract Plan Language Reference

717

Syntax ( i_scan index_name base_table )

( i_scan () base_table )

Parameters index_name
is the name or index ID of the index to use for an index scan of the 
specified stored table. Use of empty parentheses specify that an index 
scan (rather than table scan) is to be performed, but leaves the choice of 
index to the optimizer.

base_table
is the name of the base table to be scanned.

Return value A derived table produced by a scan of the base table.

Examples Example 1 

select * from t1 where c11 = 0

 

( i_scan i_c11 t1 )

Specifies the use of index i_c11 for a scan of t1.

Example 2  

select *
    from t1, t2
    where c11 = 0
        and c22 = 1000
        and c12 = c21

 

( g_join
        ( scan t2 )
        ( i_scan () t1 )
)

Specifies a partial plan, indicating the join order, but allowing the 
optimizer to choose the access method for t2, and the index for t1.

select * from t1 where c12 = 0

 

( i_scan 2 t1 )

Identifies the index on t1 by index ID, rather than by name. 

Usage • The index is used to scan the table, or, if no index is specified, an 
index is used rather than a table scan.



in 

718  

• Use of empty parentheses after the i_scan operator allows the 
optimizer to choose the index or to perform a table scan if no index 
exists on the table.

• When the i_scan operator is specified, a covering index scan is always 
performed when all of the required columns are included in the index. 
No abstract plan specification is needed to describe a covering index 
scan.

• Use of the i_scan operator suppresses the choice of the reformatting 
strategy and the OR strategy, even if the specified index does not 
exist. The optimizer chooses another useful index and an advisory 
message is printed. If no index is specified for i_scan, or if no indexes 
exist, a table scan is performed, and an advisory message is printed.

• Although specifying an index using the index ID is valid in abstract 
query plans, using an index ID is not recommended. If indexes are 
dropped and re-created in a different order, plans become invalid or 
perform suboptimally. 

See also scan, t_scan

in
Description Identifies the location of a table that is specified in a subquery or view.

Syntax ( in ( [ subq subquery_id | view view_name ] )
)

Parameters subq subquery_id
is an integer identifying a subquery. In abstract plans, subquery 
numbering is based on the order of the leading open parentheses for the 
subqueries in a query.

view view_name
is the name of a view. The specification of database and owner name in 
the abstract plan must match the usage in the query in order for plan 
association to be performed.

Examples Example 1 

create view v1 as 
select * from t1

select * from v1



CHAPTER 32    Abstract Plan Language Reference

719

 

( t_scan ( table t1 ( in ( view v1 ) ) ) )

Identifies the view in which table t1 is used.

Example 2  

select * 
from t2 
where c21 
in (select c12 from t1)

 

( g_join 
    ( t_scan t2 ) 
    ( t_scan ( table t1 ( in ( subq 1 ) ) ) ) 
) 

Identifies the scan of table t1 in subquery 1.

Example 3  

create view v9    
as 
select *
from t1
where c11 in (select c21 from t2)

 

create view v10
as
select * from v9
where c11 in (select c11 from v9)

 

select * from v10, t3
where c11 in 
        (select c11 from v10 where c12 = t3.c31)

 

( g_join 
( t_scan t3 ) 
( i_scan i_c21 ( table t2 ( in ( subq 1 ) ( view v9 ) ( view v10 )))) 
( i_scan i_c11 ( table t1 ( in ( view v9 ) ( view v10 )))) 
( i_scan i_c11 ( table t1 ( in ( view v9 ) ( view v10 ) ( subq 1 )))) 



lru 

720  

( i_scan i_c11 ( table t1 ( in ( view v9 ) ( subq 1 ) ( view v10 )))) 
( i_scan i_c21 ( table t2 ( in ( subq 1 ) ( view v9 ) ( subq 1 ) ( view v10 )))) 
( i_scan i_c11 ( table t1 ( in ( view v9 ) ( subq 1 ) ( view v10 ) ( subq 1 )))) 
( i_scan i_c21 ( table t2 ( in ( subq 1 ) ( view v9 ) ( view v10 ) ( subq 1 )))) 
( i_scan i_c21 ( table t2(in( subq 1 )( view v9 )( subq 1 )( view v10 ) ( 
subq 1)))) 
) 

An example of multiple nesting of views and subqueries.

Usage • Identifies the occurrence of a table in view or subqueryof the SQL 
query.

• The in list has the innermost items to the left, near the table’s name 
(itself the deeply nested item), and the outermost items (the ones 
occurring in the top level query) to the right. For example, the 
qualification: 

(table t2 (in (subq 1) (view v9) (subq 1) (view 
v10) (subq 1) ) )

can be read in either direction:

• Reading left to right, starting from the table: the base table t2  as 
scanned in the first subquery of view v9 , which occurs in the first 
subquery of view v10 , which occurs in the first subquery of the 
main query

• Reading from right to left, that is, starting from the main query: 
in the main query there’s a first subquery, that scans the view v10 
, that contains a first subquery that scans the view v9 , that 
contains a first subquery that scans the base table t2

See also nested, subq, table, view

lru
Description Specifies LRU cache strategy for the scan of a stored table.

Syntax ( prop table_name
( lru )

)

Parameters table_name
is the table to which the property is to be applied.

Examples select * from t1



CHAPTER 32    Abstract Plan Language Reference

721

( prop t1
        ( lru)    
)

Specifies the use of LRU cache strategy for the scan of t1.

Usage • LRU strategy is used in the resulting query plan.

• Partial plans can specify scan properties without specifying other 
portions of the query plan.

• Full query plans always include all scan properties.

See also mru, prop

m_g_join
Description Specifies a merge join of two derived tables.

Syntax ( m_g_join (
( derived_table1 )
( derived_table2 )

)

Parameters derived_table1...derived_tableN
are the derived tables to be united. derived_table1 is always the outer 
table and derived_table2 is the inner table

Return value A derived table that is the join of the specified derived tables.

Examples Example 1 

select t1.c11, t2.c21
    from t1, t2, t3
    where t1.c11 = t2.c21
        and t1.c11 = t3.c31

( nl_g_join 
        ( m_g_join 
            ( i_scan i_c31 t3 ) 
            ( i_scan i_c11 t1 ) 
        ) 
        ( t_scan t2 ) 
)



m_g_join 

722  

Specifies a right-merge join of tables t1 and t3, followed by a nested-loop 
join with table t2.

Example 2  

select * from t1, t2, t3
where t1.c11 = t2.c21 and t1.c11 = t3.c31
and t2.c22 =7

 

( nl_g_join 
    ( m_g_join 
        ( i_scan i_c21 t2 ) 
        ( i_scan i_c11 t1 ) 
    ) 
    ( i_scan i_c31 t3 ) 
) 

Specifies a full-merge join of tables t2 (outer) and t1 (inner), followed in 
the join order by a nested-loop join with t3.

Example 3  

select c11, c22, c32
from t1, t2, t3
where t1.c11 = t2.c21
and t2.c22 = t3.c32

 

( m_g_join
        (nl_g_join
            (i_scan i_c11 t1)
            (i_scan i_c12 t2)
        )
    (i_scan i_c32_ix t3)
) 

Specifies a nested-loop join of t1 and t2, followed by a merge join with t3.

Usage • The tables are joined in the order specified in the m_g_join clause.

• The sort step and worktable required to process sort-merge join 
queries are not represented in abstract plans.

• If the m_g_join operator is used to specify a join that cannot be 
performed as a merge join, the specification is silently ignored.

See also g_join, nl_g_join



CHAPTER 32    Abstract Plan Language Reference

723

mru
Description Specifies MRU cache strategy for the scan of a stored table.

Syntax ( prop table_name
( mru)

)

Parameters table_name
is the table to which the property is to be applied.

Examples select * from t1

 

( prop t1
        ( mru )    
)

Specifies the use of MRU cache strategy for the table.

Usage • MRU strategy is specified in the resulting query plan

• Partial plans can specify scan properties without specifying other 
portions of the query plan.

• Generated query plans always include all scan properties.

• If sp_cachestrategy has been used to disable MRU replacement for a 
table or index, and the query plan specifies MRU, the specification in 
the abstract plan is silently ignored.

See also lru, prop

nested
Description Describes the nesting of subqueries on a derived table.

Syntax ( nested 
( derived_table )

( subquery_specification )
)

Parameters derived_table
is the derived table over which to nest the specified subquery.

subquery_specification
is the subquery to nest over derived_table



nested 

724  

Return value A derived table.

Examples Example 1 

select c11 from t1
where c12 = 
        (select c21 from t2 where c22 = t1.c11)

 

( nested 
        ( t_scan t1 ) 
        ( subq 1 
                ( t_scan ( table t2 ( in ( subq 1 ) ) ) ) 
        ) 
) 

A single nested subquery.

Example 2  

select c11 from t1
where c12 = 
        (select c21 from t2 where c22 = t1.c11)
    and c12 = 
        (select c31 from t3 where c32 = t1.c11)

 

( nested 
        ( nested 
                ( t_scan t1 ) 
                ( subq 1 
                        ( t_scan ( table t2 ( in ( subq 1 ) ) ) ) 
                ) 
        ) 
        ( subq 2 
                ( t_scan ( table t3 ( in ( subq 2 ) ) ) ) 
        ) 
) 

The two subqueries are both nested in the main query.

Example 3  

select c11 from t1
where c12 = 
    (select c21 from t2 where c22 = 
        (select c31 from t3 where c32 = t1.c11))

 



CHAPTER 32    Abstract Plan Language Reference

725

( nested 
        ( t_scan t1 ) 
        ( subq 1 
                ( nested 
                        ( t_scan ( table t2 ( in ( subq 1 ) ) ) ) 
                        ( subq 2 
                              ( t_scan ( table t3 ( in ( subq 2 ) ) ) ) 
                        ) 
                ) 
        ) 
) 

A level 2 subquery nested into a level 1 subquery nested in the main query.

Usage • The subquery is executed at the specified attachment point in the 
query plan.

• Materialized and flattened subqueries do not appear under a nested 
operator. See subq on subq on page 734  for examples.

See also in, subq

nl_g_join
Description Specifies a nested-loop join of two or more derived tables.

Syntax ( nl_g_join        ( derived_table1 )
( derived_table2 )

        ...
( derived_tableN )

)

Parameters derived_table1...derived_tableN
are the derived tables to be united.

Return value A derived table that is the join of the specified derived tables.

Examples Example 1 

select *
from t1, t2
where c21 = 0
and c22 = c12

 

( nl_g_join
    ( i_scan i_c21 t2 )



parallel 

726  

    ( i_scan i_c12 t1 )
)

Table t2 is the outer table, and t1 the inner table in the join order.

Example 2  

select *
from t1, t2, t3
where c21 = 0
and c22 = c12
and c11 = c31

 

( nl_g_join
    ( i_scan i_c21 t2 )
    ( i_scan i_c12 t1 )
    ( i_scan i_c31 t3 )
)

Table t2 is joined with t1, and the derived table is joined with t3.

Usage • The tables are joined in the order specified in the nl_g_join clause

• The nl_g_join operator is a generic logical operator that describes all 
binary joins (inner join, outer join, or semijoin). The joins are 
performed using the nested-loops query execution method.

See also g_join, m_g_join

parallel
Description Specifies the degree of parallelism for the scan of a stored table.

Syntax ( prop table_name
( parallel degree  )

)

Parameters table_name
is the table to which the property is to be applied.

degree
is the degree of parallelism to use for the scan.

Examples select * from t1

 



CHAPTER 32    Abstract Plan Language Reference

727

(prop t1
        ( parallel 5 ) 
)

Specifies that 5 worker processes should be used for the scan of the t1 
table.

Usage • The scan is performed using the specified number of worker 
processes, if available.

• Partial plans can specify scan properties without specifying other 
portions of the query plan.

• If a saved plan specifies the use of a number of worker processes, but 
session-level or server-level values are different when the query is 
executed:

• If the plan specifies more worker processes than permitted by the 
current settings, the current settings are used or the query is 
executed using a serial plan.

• If the plan specifies fewer worker processes than permitted by the 
current settings, the values in the plan are used.

These changes to the query plan are performed transparently to the 
user, so no warning messages are issued.

See also prop

plan
Description Provides a mechanism for grouping the query plan steps of multi-step 

queries, such as queries requiring worktables, and queries computing 
aggregate values.

Syntax (plan
query_step1
...
query_stepN

)

Parameters query_step1...query_stepN –
specify the abstract plan steps for the execution of each step in the 
query.

Return value A derived table.



plan 

728  

Examples Example 1 

select max(c11) from t1
group by c12

 

( plan
    ( store Worktab1
        ( t_scan t1 )
    )
    ( t_scan ( work_t Worktab1 ) )
)

Returns a vector aggregate. The first operand of the plan operator creates 
Worktab1 and specifies a table scan of the base table. The second operand 
scans the worktable to return the results.

Example 2  

select max(c11) from t1

 

( plan
    ( t_scan t1 )
    ( )
)

Returns a scalar aggregate. The last derived table is empty, because scalar 
aggregates accumulate the result value in an internal variable rather than a 
worktable.

Example 3  

select *
from t1
where c11 = (select count(*) from t2)

 

( plan
    ( i_scan i_c21 (table t2 ( in_subq 1) ) )
    ( i_scan i_c11 t1 )
)

Specifies the execution of a materialized subquery.

Example 4  

create view v3
as



CHAPTER 32    Abstract Plan Language Reference

729

select distinct * from t3

 

select * from t1, v3
where c11 = c31

 

( plan
    ( store Worktab1
        ( t_scan (table t3 (in_view v3 ) ) )
    )
    ( nl_g_join
        ( t_scan t1 )
        ( t_scan ( work_t Worktab1 ) )
    )
)

Specifies the execution of a materialized view.

Usage • Tables are accessed in the order specified, with the specified access 
methods.

• The plan operator is required for multistep queries, including:

• Queries that generate worktables, such as queries that perform 
sorts and those that compute vector aggregates

• Queries that compute scalar aggregates

• Queries that include materialized subqueries

• An abstract plan for a query that requires multiple execution steps 
must include operands for each step in query execution if it begins 
with the plan keyword. Use the hints operator to introduce partial 
plans.

See also hints

prefetch
Description Specifies the I/O size to use for the scan of a stored table.

Syntax ( prop table_name
( prefetch size  )

)



prop 

730  

Parameters table_name
is the table to which the property is to be applied.

size
is a valid I/O size: 2, 4, 8 or 16.

Examples select * from t1

 

( prop t1
    (prefetch 16 )
)

16K I/O size is used for the scan of t1.

Usage • The specified I/O size is used in the resultant query plan if a pool of 
that size exists in the cache used by the table.

• Partial plans can specify scan properties without specifying other 
portions of the query plan.

• If large I/O specifications in a saved plan do not match current pool 
configuration or other options:

• If the plan specifies 16K I/O, and the 16K pool does not exist, the 
next largest available I/O size is used.

• If session or server-level options have made large I/O unavailable 
for the query (set prefetch for the session, or sp_cachestrategy for 
the table), 2K I/O is used.

• If you save plans that specify only 2K I/O for the scan properties, and 
later create large I/O pools, enable replace mode to save the new plans 
if you want these plans to use larger I/O sizes.

See also prop

prop
Description Specifies properties to use for the scan of a stored table.

Syntax ( prop table_name
( property_specification ) ...

)

property_specification:



CHAPTER 32    Abstract Plan Language Reference

731

( prefetch size )
( lru | mru )
( parallel degree )

Parameters table_name
is the table to which the property is to be applied.

Examples select * from t1

 

( t_scan t1 ) 
( prop t1 
    ( parallel 1 ) 
    ( prefetch 16 ) 
    ( lru ) 
)

Shows the property values used by the scan of t1.

Usage • The specified properties are used for the scan of the table

• Partial plans can specify scan properties without specifying other 
portions of the query plan.

• Generated plans include the parallel, prefetch, and cache strategy 
properties used for each table in the query.

See also lru, mru, parallel, prefetch

scan
Description Specifies the scan of a stored table, without specifying the type of scan.

Syntax ( scan stored_table )

Parameters stored_table
is the name of the stored table to be scanned. It can be a base table or 
worktable.

Return value A derived table produced by the scan of the stored table.

Examples Example 1 

select * from t1 where c11 > 10

 

( scan t1 )



store 

732  

Specifies a scan of t1, leaving the optimizer to choose whether to perform 
a table scan or index scan.

Example 2  

select *
    from t1, t2
    where c11 = 0
        and c22 = 1000
        and c12 = c21

 

( nl_g_join
        ( scan t2 )
        ( i_scan i_c22 t1 )
)

Specifies a partial plan, indicating the join order, but allowing the 
optimizer to choose the access method for t2. 

Usage • The optimizer chooses the access method for the stored table.

• The scan operator is used when the choice of the type of scan should 
be left to the optimizer. The resulting access method can be one of the 
following:

• A full table scan

• An index scan, with access to data pages

• A covering index scan, with no access to data pages

• A RID scan, used for the OR strategy

• For an example of an abstract plan that specifies the reformatting 
strategy, see store.

See also i_scan, store, t_scan

store
Description Stores the results of a scan in a worktable.

Syntax ( store worktable_name
( [scan | i_scan | t_scan ] table_name )

)



CHAPTER 32    Abstract Plan Language Reference

733

Parameters worktable_name
is the name of the worktable to be created.

table_name
is the name of the base table to be scanned.

Return value A worktable that is the result of the scan.

Examples select c12, max(c11) from t1
        group by c12

 

( plan 
    ( store Worktab1 
        ( t_scan t1 ) 
    ) 
    ( t_scan ( work_t Worktab1 ) ) 
)

Specifies the two-step process of selecting the vector aggregate into a 
worktable, then selecting the results of the worktable.

Usage • The specified table is scanned, and the result is stored in a worktable

• The legal places for a store operator in an abstract plan are:

• Under a plan or union operator, where the store operator signifies 
a preprocessing step resulting in a worktable

• Under a scan operator (but not under an i_scan or t_scan 
operator)

• During plan capture mode, worktables are identified as Worktab1, 
Worktab2, and so on. For manually entered plans, any naming 
convention can be used.

• The use of the reformatting strategy can be described in an abstract 
plan using the scan (store ( )) combination of operators. For example, 
if t2 has no indexes and is very large, the abstract plan below indicates 
that t2 should be scanned once, via a table scan, with the results stored 
in a worktable:

select * 
from t1, t2
where c11 > 0
        and c12 = c21
        and c22 between 0 and 10000
( nl_g_join
        (i_scan i_c11 t1)



subq 

734  

        ( scan (store (t_scan t2 )))
)

See also scan

subq
Description Identifies a subquery.

Syntax ( subq subquery_id
)

Parameters subquery_id
is an integer identifying the subquery. In abstract plans, subquery 
numbering is based on the order of the leading parenthesis for the 
subqueries in a query.

Examples Example 1 

select c11 from t1
where c12 = 
        (select c21 from t2 where c22 = t1.c11)

 

( nested 
        ( t_scan t1 ) 
        ( subq 1 
                ( t_scan ( table t2 ( in ( subq 1 ) ) ) ) 
        ) 
)

A single nested subquery.

Example 2  

select c11 from t1
where c12 = 
        (select c21 from t2 where c22 = t1.c11)
    and c12 = 
        (select c31 from t3 where c32 = t1.c11)

 

( nested 
        ( nested 
                ( t_scan t1 ) 
                ( subq 1 



CHAPTER 32    Abstract Plan Language Reference

735

                        ( t_scan ( table t2 ( in ( 
subq 1 ) ) ) ) 
                ) 
        ) 
        ( subq 2 
                ( t_scan ( table t3 ( in ( subq 2 ) ) ) ) 
        ) 
) 

The two subqueries are both nested in the main query.

Example 3  

select c11 from t1
where c12 = 
    (select c21 from t2 where c22 = 
        (select c31 from t3 where c32 = t1.c11))

 

( nested 
     ( t_scan t1 ) 
     ( subq 1 
          ( nested 
               ( t_scan ( table t2 ( in ( subq 1 ) ) ) ) 
               ( subq 2 
                    ( t_scan ( table t3 ( in ( subq 
2 ) ) ) ) 
               ) 
          ) 
     ) 
) 

A level 2 subquery nested into a level 1 subquery nested in the main query.

Usage • The subq operator has two meanings in an abstract plan expression: 

• Under a nested operator, it describes the attachment of a nested 
subquery to a table

• Under an in operator, it describes the nesting of the base tables 
and views that the subquery contains

• To specify the attachment of a subquery without providing a plan 
specification, use an empty hint:

( nested
    ( t_scan t1)
    ( subq 1
            ()



subq 

736  

    )
)

• To provide a description of the abstract plan for a subquery, without 
specifying its attachment, specify an empty hint as the derived table 
in the nested operator:

( nested 
    ()
    ( subq 1
        (t_scan ( table t1 ( in ( subq 1 ) ) ) )
    )
)

• When subqueries are flattened to a join, the only reference to the 
subquery in the abstract plan is the identification of the table specified 
in the subquery:

select * 
from t2 
where c21 in (select c12 from t1)
( nl_g_join 
    ( t_scan t1 ) 
    ( t_scan ( table t2 ( in ( subq 1 ) ) ) ) 

• When a subquery is materialized, the subquery appears in the store 
operation, identifying the table to be scanned during the 
materialization step:

select * 
from t1 
where c11 in (select max(c22) from t2 group by 
c21)
( plan 
    ( store Worktab1 
        ( t_scan ( table t2 ( in ( subq 1 ) ) ) ) 
    ) 
    ( nl_g_join 
        ( t_scan t1 ) 
        ( t_scan ( work_t Worktab1 ) ) 
    ) 
) 

See also in, nested, table



CHAPTER 32    Abstract Plan Language Reference

737

t_scan
Description Specifies a table scan of a stored table.

Syntax ( t_scan stored_table )

Parameters stored_table
is the name of the stored table to be scanned.

Return value A derived table produced by the scan of the stored table.

Examples select * from t1

 

( t_scan t1 )

Performs a table scan of t1.

Usage • Instructs the optimizer to perform a table scan on the stored table.

• Specifying t_scan forbids the use of reformatting and the OR strategy.

See also i_scan, scan, store

table
Description Identifies a base table that occurs in a subquery or view or that is assigned 

a correlation name in the from clause of the query.

Syntax ( table table_name [ qualification ] )

( table ( correlation_name table_name) )

Parameters table_name
is a base table. If the query uses the database name and/or owner name, 
the abstract plan must also provide them.

correlation_name
is the correlation name, if a correlation name is used in the query.

qualification
is either in (subq subquery_id) or in (view view_name).

Examples Example 1 

select * from t1 table1, t2 table2
where table1.c11 = table2.c21

 



table 

738  

( nl_g_join 
    ( t_scan ( table ( table1 t1 ) ) )
    ( t_scan ( table ( table2 t2 ) ) )
)

Tables t1 and t2 are identified by reference to the correlation names used 
in the query.

Example 2  

select c11 from t1
where c12 = 
        (select c21 from t2 where c22 = t1.c11)

 

( nested 
        ( t_scan t1 ) 
        ( subq 1 
                ( t_scan ( table t2 ( in ( subq 1 ) ) ) ) 
        ) 
) 

Table t2 in the subquery is identified by reference to the subquery.

Example 3  

create view v1
as
select * from t1 where c12 > 100

select t1.c11 from t1, v1
where t1.c12 = v1.c11

 

( nl_g_join 
        ( t_scan t1 ) 
        ( i_scan 2 ( table t1 ( in ( view v1 ) ) ) )

Table t1 in the view is identified by reference to the view.

Usage • The specified derived tables in the abstract plan are matched against 
the positionally corresponding tables specified in the query.

• The table operator is used to link table names in an abstract plan to the 
corresponding table in a SQL query in queries that contain views, 
subqueries, and correlation names for tables.

• When correlation names are used, all references to the table, including 
those in the scan properties section, are in the form:



CHAPTER 32    Abstract Plan Language Reference

739

( table ( correlation_name table_name) )

The table operator is used for all references to the table, including the 
scan properties for the table under the props operator.

See also in, subq, view

union
Description Describes the union of the two or more derived tables.

Syntax (union
derived_table1
...
derived_tableN

)

Parameters derived_table1...derived_tableN
is the derived tables to be united.

Return value A derived table that is the union of the specified operands.

Examples Example 1 

select * from t1
union
select * from t2
union
select * from t3

 

(union
    (t_scan t1)
    (t_scan t2)
    (t_scan t3)
)

Returns the union of the three full table scans.

Example 2  

select 1,2
union
select * from t2

 



view 

740  

(union
    ( )
    (tscan t2)
)

Since the first side of the union is not an optimizable query, the first union 
operand is empty.

Usage • The specified derived tables in the abstract plan are matched against 
the positionally corresponding tables specified in the query.

• The union operator describes the processing for:

• union, which removes duplicate values and 

• union all, which preserves duplicate values

• The union operator in an abstract query plan must have the same 
number of union sides as the SQL query and the order of the operands 
for the abstract plan must match the order of tables in the query.

• The sort step and worktable required to process union queries are not 
represented in abstract plans.

• If union queries list nonoptimizable elements, an empty operand is 
required. A select query that has no from clause is shown in example 

See also i_scan, scan, t_scan

view
Description Identifies a view that contains the base table to be scanned.

Syntax view view_name

Parameters view_name
is the name of a view specified in the query. If the query uses the 
database name and/or owner name, the abstract plan must also provides 
them.

Examples create view v1 as 
select * from t1

 

select * from v1



CHAPTER 32    Abstract Plan Language Reference

741

 

( t_scan ( table t1 ( in ( view v ) ) ) )

Identifies the view in which table t1 is used.

Usage • When a query includes a view, the table must be identified using table 
(tablename ( in view_name )).

See also in, table

work_t
Description Describes a stored worktable.

Syntax ( work_t [ worktable_name 
| (correlation_name worktable_name) ]

)

Parameters worktable_name
is the name of a worktable.

correlation_name
is the correlation name specified for a worktable, if any.

Return value A stored table. 

Examples select c12, max(c11) from t1
    group by c12

 

( plan 
    ( store Worktab1 
        ( t_scan t1 ) 
    ) 
    ( t_scan ( work_t Worktab1 ) ) 
)

Specifies the two-step process of selecting vector aggregates into a 
worktable, then selecting the results of the worktable. 

Usage • Matches the stored table against a work table in the query plan.

• The store operator creates a worktable; the work_t operator identifies 
a stored worktable for later access in the abstract plan.



work_t 

742  

• During plan capture mode, worktables are identified as Worktab1, 
Worktab2, and so on. For manually entered plans, any naming 
convention can be used.

• If the scan of the worktable is never specified explicitly with a scan 
operator, the worktable does not have to be named and the work_t 
operator can be omitted. The following plan uses an empty scan 
operator “( )” in place of the t_scan and work_t specifications used in 
example 

( plan
    ( store 
        ( t_scan titles ) 
        ) 
    ()
)

• Correlation names for worktables are needed only for self-joined 
materialized views, for example:

create view v 
as 
select distinct c11 from t1

select * 
from v v1, v v2
where ...

( plan
    ( store Worktab1
        ( t_scan ( table t1 (in ( view v ) ) ) )
    )
    ( g_join
        ( t_scan (work_t ( v1 Worktab1 ) ) )
        ( t_scan (work_t ( v2 Worktab1 ) ) )
    )
)

See also store, view


	Performance and Tuning Guide: Volume 2 - Optimizing and Abstract Plans
	Adaptive Server Enterprise
	About This Book
	Audience
	How to use this book
	Index
	Related documents
	Other sources of information
	Sybase certifications on the Web
	For the latest information on product certifications
	For the latest information on EBFs and Updates
	To create a personalized view of the Sybase Web site (including support pages)
	Conventions
	Formatting SQL statements
	Font and syntax conventions
	Table 1: Font and syntax conventions in this manual
	Case
	Expressions
	Table 2: Types of expressions used in syntax statements
	Examples
	If you need help

	CHAPTER 17 Adaptive Server Optimizer
	Definition
	Steps in query processing
	Working with the optimizer

	Object sizes are important to query tuning
	Query optimization
	Factors examined during optimization
	Preprocessing can add clauses for optimizing
	Converting clauses to search argument equivalents
	Table 17-1: Search argument equivalents

	Converting expressions into search arguments
	Search argument transitive closure
	Join transitive closure
	Enabling join transitive closure

	Predicate transformation and factoring
	Example


	Guidelines for creating search arguments
	Search arguments and useful indexes
	Search argument syntax
	Nonequality operators
	Examples of SARGs

	How statistics are used for SARGS
	Histogram cells
	Density values
	Range cell density and total density
	How the optimizer uses densities and histograms

	Using statistics on multiple search arguments
	Default values for search arguments
	Table 17-2: Density approximations for unknown search arguments

	SARGs using variables and parameters

	Join syntax and join processing
	How joins are processed
	When statistics are not available for joins
	Density values and joins
	Multiple column joins
	Search arguments and joins on a table

	Datatype mismatches and query optimization
	Overview of the datatype hierarchy and index issues
	Comparison of numeric and decimal datatypes
	Comparing numeric types to other datatypes
	Table 17-3: Precision and scale of integer and money types


	Datatypes for parameters and variables used as SARGs
	Troubleshooting datatype mismatch problems fo SARGs

	Compatible datatypes for join columns
	Table 17-4: Indexes considered for mismatched column datatypes
	Troubleshooting datatype mismatch problems for joins

	Suggestions on datatypes and comparisons
	Forcing a conversion to the other side of a join

	Splitting stored procedures to improve costing
	Basic units of costing

	CHAPTER 18 Advanced Optimizing Tools
	Special optimizing techniques
	Specifying optimizer choices
	Specifying table order in joins
	Risks of using forceplan
	Things to try before using forceplan

	Specifying the number of tables considered by the optimizer
	Specifying an index for a query
	Risks
	Things to try before specifying an index

	Specifying I/O size in a query
	Index type and large I/O
	Table 18-1: Access methods and prefetching

	When prefetch specification is not followed
	set prefetch on

	Specifying the cache strategy
	In select, delete, and update statements

	Controlling large I/O and cache strategies
	Getting information on cache strategies

	Enabling and disabling merge joins
	Enabling and disabling join transitive closure
	Suggesting a degree of parallelism for a query
	Table 18-2: Optimizer hints for serial and parallel execution
	Query level parallel clause examples

	Concurrency optimization for small tables
	Changing locking scheme
	Table 18-3: Effects of alter table on concurrency optimization settings



	CHAPTER 19 Query Tuning Tools
	Overview
	How tools may interact
	Using showplan and noexec together
	noexec and statistics io

	How tools relate to query processing

	CHAPTER 20 Access Methods and Query Costing for Single Tables
	Table scan cost
	Cost of a scan on allpages-locked table
	Cost of a scan on a data-only-locked tables
	Figure 20-1: Sequence of pointers for OAM scans


	From rows to pages
	How cluster ratios affect large I/O estimates
	Data page cluster ratio
	On allpages-locked tables
	Figure 20-2: Page chain crossing extents in an allpages-locked table

	On data-only-locked tables

	Index page cluster ratio


	Evaluating the cost of index access
	Query that returns a single row
	Query that returns many rows
	Range queries using clustered indexes (allpages locking)
	Figure 20-3: Range query on the clustered index of an allpages�locked table


	Range queries with covering indexes
	Range queries with noncovering indexes
	Result-set size and index use
	Closer look at the Search Argument costing

	Costing for noncovering index scans
	Costing for forwarded rows


	Costing for queries using order by
	Prefix subset and sorts
	Key ordering and sorts
	Specifying ascending or descending order for index keys
	Figure 20-4: Forward and backward scans on an index


	How the optimizer costs sort operations
	Allpages-locked tables with clustered indexes
	Figure 20-5: An order by query using a clustered index, allpages locking
	Figure 20-6: An order by desc query using a clustered index

	Sorts when index covers the query
	Sorts and noncovering indexes
	Backward scans and joins
	Deadlocks and descending scans


	Access Methods and Costing for or and in Clauses
	or syntax
	in (values_list) converts to or processing
	Methods for processing or clauses
	When table scans are used for or queries
	Dynamic index (OR strategy)
	Figure 20-7: Resolving or queries using the OR strategy

	Multiple matching index scans (special OR strategy)


	How aggregates are optimized
	Table 20-1: Special access methods for aggregates
	Combining max and min aggregates
	Queries that use both min and max


	How update operations are performed
	Direct updates
	In-place updates
	Cheap direct updates
	Expensive direct updates

	Deferred updates
	When deferred updates are required

	Deferred index inserts
	Figure 20-8: Deferred index update

	Restrictions on update modes through joins
	Joins and subqueries in update and delete statements
	Deletes and updates in triggers versus referential integrity

	Optimizing updates
	Designing for direct updates
	Effects of update types and indexes on update modes
	Table 20-2: Effects of indexing on update mode


	Using sp_sysmon while tuning updates


	CHAPTER 21 Accessing Methods and Costing for Joins and Subqueries
	Costing and optimizing joins
	Processing
	Index density and joins
	Multicolumn densities

	Datatype mismatches and joins
	Join permutations
	Table 21-1: Tables considered at a time during a join
	Outer joins and join permutations


	Nested-loop joins
	Figure 21-1: Nesting of tables during a nested-loop join
	Cost formula
	How inner and outer tables are determined

	Access methods and costing for sort-merge joins
	Figure 21-2: Merge join types
	How a full-merge is performed
	Figure 21-3: A serial merge scan on two tables with clustered indexes
	Figure 21-4: Full merge scan using a nonclustered index on the inner table

	How a right-merge or left-merge is performed
	How a sort-merge is performed
	Mixed example
	Figure 21-5: Multiple steps in processing a merge join
	showplan messages for sort-merge joins

	Costing for merge joins
	Costing for a full-merge with unique values
	Example: allpages-locked tables with clustered indexes
	Costing for a full-merge with duplicate values
	Costing sorts
	Worktable size for sort-merge joins

	When merge joins cannot be used
	Use of worker processes
	Recommendations for improved merge performance

	Enabling and disabling merge joins
	At the server level
	At the session level

	Reformatting strategy
	Subquery optimization
	Flattening in, any, and exists subqueries
	When flattening can be done
	Exceptions to flattening
	Flattening methods
	Join order and flattening methods
	Flattened subqueries executed as regular joins
	Flattened subqueries executed as existence joins
	Flattened subqueries executed using unique reformatting
	Flattened subqueries using duplicate elimination

	Flattening expression subqueries
	Materializing subquery results
	Noncorrelated expression subqueries
	Quantified predicate subqueries containing aggregates

	Subquery introduced with an and clause
	Subquery introduced with an or clause
	Subquery results caching
	Displaying subquery cache information

	Optimizing subqueries

	or Clauses versus unions in joins

	CHAPTER 22 Parallel Query Processing
	Types of queries that can benefit from parallel processing
	Adaptive Server’s worker process model
	Figure 22-1: Worker process model
	Parallel query execution
	Figure 22-2: Relative execution times for serial and parallel query execution

	Returning results from parallel queries

	Types of parallel data access
	Figure 22-3: A serial task scans data pages
	Hash-based table scans
	Figure 22-4: Worker processes scan an unpartitioned table

	Partition-based scans
	Figure 22-5: Multiple worker processes access multiple partitions

	Hash-based index scans
	Figure 22-6: Hash-based, nonclustered index scan

	Parallel processing for two tables in a join
	Figure 22-7: Join query using different parallel access methods on each table

	showplan messages

	Controlling the degree of parallelism
	Configuration parameters for controlling parallelism
	Table 22-1: Configuration parameters for parallel execution
	How limits apply to query plans
	How the limits work in combination
	Examples of setting parallel configuration parameters

	Using set options to control parallelism for a session
	Table 22-2: set options for parallel execution tuning
	set command examples

	Controlling parallelism for a query
	Query level parallel clause examples

	Worker process availability and query execution
	Other configuration parameters for parallel processing

	Commands for working with partitioned tables
	Figure 22-8: Steps for creating and loading a new partitioned table

	Balancing resources and performance
	CPU resources
	Disk resources and I/O
	Tuning example: CPU and I/O saturation
	Table 22-3: Scaling of engines and worker processes


	Guidelines for parallel query configuration
	Hardware guidelines
	Working with your performance goals and hardware guidelines
	Examples of parallel query tuning
	Improving the performance of a table scan
	Improving the performance of a nonclustered index scan

	Guidelines for partitioning and parallel degree
	Experimenting with data subsets

	System level impacts
	Locking issues
	Device issues
	Procedure cache effects

	When parallel query results can differ
	Queries that use set rowcount
	Queries that set local variables
	Achieving consistent results


	CHAPTER 23 Parallel Query Optimization
	What is parallel query optimization?
	Optimizing for response time versus total work

	When is optimization performed?
	Overhead costs
	Factors that are not considered

	Parallel access methods
	Parallel partition scan
	Figure 23-1: Parallel partition scan
	Requirements for consideration
	Cost model

	Parallel clustered index partition scan (allpages-locked tables)
	Figure 23-2: Parallel clustered index partition scan
	Requirements for consideration
	Cost model

	Parallel hash-based table scan
	Hash-based table scans on allpages-locked tables
	Figure 23-3: Parallel hash-based table scan on an allpages-locked table

	Hash-based table scans on data-only-locked tables
	Requirements for consideration
	Cost model

	Parallel hash-based index scan
	Figure 23-4: Nonclustered index hash-based scan
	Cost model and requirements

	Parallel range-based scans
	Requirements for consideration
	Figure 23-5: A parallel right-merge join


	Additional parallel strategies
	Partitioned worktables
	Parallel sorting


	Summary of parallel access methods
	Table 23-1: Parallel access method summary
	Selecting parallel access methods
	Table 23-2: Determining applicable partition or hash-based access methods


	Degree of parallelism for parallel queries
	Upper limit
	Optimized degree
	Worker processes for partition-based scans
	Worker processes for hash-based scans
	Worker processes for range-based scans
	Usage while creating the worktable
	Parallel sorting for merge-join worktables
	Number of merge threads
	Total usage for merge joins


	Nested-loop joins
	Figure 23-6: Worker process usage for a nested-loop join
	Alternative plans
	Computing the degree of parallelism for nested-loop joins
	Parallel queries and existence joins

	Examples
	Partitioned heap table
	Single-table query
	Query with a join

	Nonpartitioned heap table
	Table with clustered index

	Runtime adjustments to worker processes

	Parallel query examples
	Single-table scans
	Table partition scan

	Multitable joins
	Parallel join optimization and join orders
	Scenario A: clustered index on publishers
	Scenario B: clustered index on titles
	Scenario C: neither table has a useful index


	Subqueries
	Queries that require worktables
	union queries
	Queries with aggregates
	select into statements

	Runtime adjustment of worker processes
	How Adaptive Server adjusts a query plan
	Evaluating the effect of runtime adjustments
	Recognizing and managing runtime adjustments
	Using set process_limit_action
	Using showplan

	Reducing the likelihood of runtime adjustments
	Checking runtime adjustments with sp_sysmon

	Diagnosing parallel performance problems
	Query does not run in parallel
	Parallel performance is not as good as expected
	Calling technical support for diagnosis

	Resource limits for parallel queries

	CHAPTER 24 Parallel Sorting
	Commands that benefits from parallel sorting
	Requirements and resources overview
	Overview of the parallel sorting strategy
	Figure 24-1: Parallel sort strategy
	Creating a distribution map
	Dynamic range partitioning
	Range sorting
	Merging results

	Configuring resources for parallel sorting
	Worker process requirements for parallel sorts
	Worker process requirements for creating indexes
	Table 24-1: Number of producers and consumers used for create index
	Clustered indexes on partitioned tables
	Clustered indexes on unpartitioned tables
	Nonclustered indexes

	Using with consumers while creating indexes

	Worker process requirements for select query sorts
	Worker processes for merge-join sorts
	Other worktable sorts

	Caches, sort buffers, and parallel sorts
	Cache bindings
	Number of sort buffers can affect sort performance
	Sort buffer configuration guidelines
	Using less than the configured number of sort buffers
	Configuring the number of sort buffers parameter
	Figure 24-2: Area available for sort buffers
	Computing the allowed sort buffer value for a pool

	Procedure for estimating merge levels and I/O
	Configuring caches for large I/O during parallel sorting
	Balancing sort buffers and large I/O configuration

	Disk requirements
	Space requirements for creating indexes
	Space requirements for worktable sorts
	Number of devices in the target segment


	Recovery considerations
	Tools for observing and tuning sort behavior
	Using set sort_resources on
	Table 24-2: Basic sort resource messages
	Examples
	Nonclustered index on a nonpartitioned table
	Nonclustered index on a partitioned table
	Clustered index on partitioned table executed in parallel
	Sort failure



	Using sp_sysmon to tune index creation

	CHAPTER 25 Tuning Asynchronous Prefetch
	How asynchronous prefetch improves performance
	Improving query performance by prefetching pages
	Prefetching control mechanisms in a multiuser environment
	Look-ahead set during recovery
	Prefetching log pages
	Prefetching data and index pages

	Look-ahead set during sequential scans
	Look-ahead set during nonclustered index access
	Look-ahead set during dbcc checks
	Allocation checking
	checkdb and checktable

	Look-ahead set minimum and maximum sizes
	Table 25-1: Look-ahead set sizes


	When prefetch is automatically disabled
	Flooding pools
	I/O system overloads
	Unnecessary reads
	Page chain fragmentation
	Figure 25-1: A kink in a page chain crossing allocation units



	Tuning Goals for Asynchronous Prefetch
	Commands for configuration

	Other Adaptive Server performance features
	Large I/O
	Sizing and limits for the 16k pool
	Limits for the 2K pool

	Fetch-and-discard (MRU) scans
	Parallel scans and large I/Os
	Hash-based table scans
	Partition-based scans


	Special settings for asynchronous prefetch limits
	Setting limits for recovery
	Setting limits for dbcc

	Maintenance activities for high prefetch performance
	Eliminating kinks in heap tables
	Eliminating kinks in clustered index tables
	Eliminating kinks in nonclustered indexes

	Performance monitoring and asynchronous prefetch

	CHAPTER 26 tempdb Performance Issues
	How management of tempdb affects performance
	Main solution areas for tempdb performance

	Types and uses of temporary tables
	Truly temporary tables
	Regular user tables
	Worktables

	Initial allocation of tempdb
	Figure 26-1: tempdb default allocation

	Sizing the tempdb
	Placing tempdb
	Dropping the master Device from tempdb segments
	Using multiple disks for parallel query performance
	Figure 26-2: tempdb spanning disks


	Binding tempdb to its own cache
	Commands for cache binding

	Temporary tables and locking
	Minimizing logging in tempdb
	With select into
	By using shorter rows

	Optimizing temporary tables
	Figure 26-3: Optimizing and creating temporary tables
	Creating indexes on temporary tables
	Creating nested procedures with temporary tables
	Breaking tempdb uses into multiple procedures


	CHAPTER 27 Cursors and Performance
	Definition
	Figure 27-1: Cursor example
	Set-oriented versus row-oriented programming
	Figure 27-2: Cursor flowchart

	Example

	Resources required at each stage
	Figure 27-3: Resource use by cursor statement
	Table 27-1: Locks and memory use for isql and Client-Library client cursors
	Memory use and execute cursors

	Cursor modes
	Index use and requirements for cursors
	Allpages-locked tables
	Data-only-locked tables
	Table scans to avoid the Halloween problem


	Comparing performance with and without cursors
	Sample stored procedure without a cursor
	Sample stored procedure with a cursor
	Cursor versus noncursor performance comparison
	Table 27-2: Sample execution times against a 5000-row table


	Locking with read-only cursors
	Figure 27-4: Read-only cursors and locking experiment input
	Table 27-3: Locks held on data and index pages by cursors

	Isolation levels and cursors
	Partitioned heap tables and cursors
	Optimizing tips for cursors
	Optimizing for cursor selects using a cursor
	Using union instead of or clauses or in lists
	Declaring the cursor’s intent
	Specifying column names in the for update clause
	Table 27-4: Effects of for update clause and shared on cursor locking

	Using set cursor rows
	Keeping cursors open across commits and rollbacks
	Opening multiple cursors on a single connection


	CHAPTER 28 Introduction to Abstract Plans
	Definition
	Managing abstract plans
	Relationship between query text and query plans
	Limits of options for influencing query plans

	Full versus partial plans
	Creating a partial plan

	Abstract plan groups
	How abstract plans are associated with queries

	CHAPTER 29 Abstract Query Plan Guide
	Introduction
	Abstract plan language
	Queries, access methods, and abstract plans

	Identifying tables
	Identifying indexes
	Specifying join order
	Shorthand notation for joins
	Join order examples
	Match between execution methods and abstract plans
	Specifying join order for queries using views

	Specifying the join type
	Specifying partial plans and hints
	Grouping multiple hints
	Inconsistent and illegal plans using hints

	Creating abstract plans for subqueries
	Materialized subqueries
	Flattened subqueries
	Example: changing the join order in a flattened subquery
	Nested subqueries
	Subquery identification and attachment
	More subquery examples: reading ordering and attachment
	Modifying subquery nesting

	Abstract plans for materialized views
	Abstract plans for queries containing aggregates
	Specifying the reformatting strategy
	OR strategy limitation
	When the store operator is not specified

	Tips on writing abstract plans
	Comparing plans “before” and “after”
	Effects of enabling server-wide capture mode
	Time and space to copy plans

	Abstract plans for stored procedures
	Procedures and plan ownership
	Procedures with variable execution paths and optimization

	Ad Hoc queries and abstract plans

	CHAPTER 30 Creating and Using Abstract Plans
	Using set commands to capture and associate plans
	Enabling plan capture mode with set plan dump
	Associating queries with stored plans
	Using replace mode during plan capture
	When to use replace mode

	Using dump, load, and replace modes simultaneously
	Using dump and load to the same group
	Using dump and load to different groups


	set plan exists check option
	Using Other set options with abstract plans
	Using showplan
	Using noexec
	Using forceplan

	Server-wide abstract plan capture and association Modes
	Creating plans using SQL
	Using create plan
	Using the plan Clause


	CHAPTER 31 Managing Abstract Plans with System Procedures
	System procedures for managing abstract plans
	Managing an abstract plan group
	Creating a group
	Dropping a group
	Getting information about a group
	Renaming a group

	Finding abstract plans
	Managing individual abstract plans
	Viewing a plan
	Copying a plan to another group
	Dropping an individual abstract plan
	Comparing two abstract plans
	Table 31-1: Return status values for sp_cmp_qplans

	Changing an existing plan

	Managing all plans in a group
	Copying all plans in a group
	Comparing all plans in a group
	Table 31-2: Report modes for sp_cmp_all_qplans

	Dropping all abstract plans in a group

	Importing and exporting groups of plans
	Exporting plans to a user table
	Importing plans from a user table


	CHAPTER 32 Abstract Plan Language Reference
	Keywords
	Operands
	Table 32-1: Identifiers used
	Derived tables

	Schema for examples
	g_join
	hints
	i_scan
	in
	lru
	m_g_join
	mru
	nested
	nl_g_join
	parallel
	plan
	prefetch
	prop
	scan
	store
	subq
	t_scan
	table
	union
	view
	work_t



